Cyber Warfare: A Perspective on Cyber Threats and Technology in the Network-Centric Warfare Battlespace

Chris Scott
Information and Systems Technology Group
MIT Lincoln Laboratory

Presented at:
US Army Cyber Symposium
September 2008
Outline

Tactical Networks

• Theory and Doctrine

• Cyber Attack Space

• Science and Technology Needs

• Recap and Closing
Cyberspace: Past, Present, and Future

Legacy Cyberspace
- Banking networks (eg SWIFT, CHIPS, Fedwire)
- Travel reservation networks (eg SABRE)
- Process control networks (SCADA systems)

Current Cyberspace
- Internet/Enterprise/Web
- Cellular networks
- Digital TV networks
- Current GIG
- Tactical Comms (eg Link16, EPLRS)

Future Cyberspace
- Tactical networks (NCW)
- IPv6 Internet
- Semantic Web
- Vehicular Networks (VANETs)
- Embedded Device Networks
- GIG Increments 1, 2, and 3

Our focus in this briefing
Tactical Networks

- Warfighting platforms are mobile and use wireless communication
- Network topology changes as assets move and links are formed and broken
- Intermittent connectivity with high packet loss rates
- Centralized network services cannot be relied upon
- Assets are forward-deployed into hostile areas, subject to overrun/capture
- Resource constrained participants (power, bandwidth, space, weight)
- Trust must be established remotely

Tactical networks differ from enterprise networks and present new cyber warfare opportunities and challenges.
Adversary Model

• Inside Adversary
 – Already “inside the castle”
 – Many ways inside
 Compromise over the network
 Compromise via software lifecycle
 Cooperating authorized user
 Physical capture of device
 Manufacture of device
 Installation of device
 – COTS, HAIPE ineffective

• Zero-day attacks and emerging threats
 – New attacks (have not been seen before)
 – Penetrate existing network protections
 – No prior knowledge of attack or appropriate response

This type of adversary is a problem for today’s enterprise networks.
Outline

• Tactical Networks

Theory and Doctrine

• Cyber Attack Space

• Science and Technology Needs

• Recap and Closing
The cyber domain can be abused to influence the cognitive and physical domains.

Cyber goals:
- Defend our cyber domain against exploitation/attack
- Attack/exploit adversary’s cyber domain

Adapted from Air Force Doctrine Document 2-5, 11 January 2005, adapted from Understanding Information Age Warfare (D.S. Alberts)
Information Operations Doctrine

From Joint Publication 3-13 “Information Operations” 13 February 2006

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNA</td>
<td>“CNA consists of actions taken through the use of computer networks to disrupt, deny, degrade, or destroy information resident in computers and computer networks, or the computers and networks themselves.”</td>
</tr>
</tbody>
</table>
| **CND** | “CND involves actions taken through the use of computer networks to **protect, monitor, analyze, detect, and respond** to unauthorized activity within DOD information systems and computer networks.”
“CND actions not only protect DOD systems from an external adversary but also from exploitation from within, and are now a necessary function in all military operations.” |
| **CNE** | “CNE is enabling operations and intelligence collection capabilities conducted through the use of computer networks to **gather data** from target or adversary automated information systems or networks.” |

In this briefing, “Cyber Operations” = CNO
Impact of Cyber Operations

- **Information Needs**
 - Information required to execute mission or task

- **Information Position**
 - Information currently possessed

- **Information Advantage**
 - When relative information position is better than opposing force’s

(Only two parties shown, actual tactical operations may involve multiple parties -- friendly and adversarial, combatant and noncombatant -- with information needs.)

“More for us is not enough”
Outline

• Tactical Networks
• Theory and Doctrine

Cyber Attack Space

• Science and Technology Needs
• Recap and Closing
Cyber Attack Space

Problem: We need a way to understand the scope of cyber attacks and defenses.

<table>
<thead>
<tr>
<th>Threat</th>
<th>What kinds of cyber attacks do we need to worry about?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>What kinds of cyber attacks are we defending against?</td>
</tr>
<tr>
<td>Force</td>
<td>How can we use the cyber domain for offensive purposes?</td>
</tr>
</tbody>
</table>

Solution: Define a cube representing the entire attack space.

- **Adversary Objectives** (in cyber domain)
- **Attack Vectors** (contain vulnerabilities)
- **Attack Classes** (exploit vulnerabilities)

Intuition: Adversary combines attack vectors and attack classes to achieve objectives.

The attack space allows us to understand the scope of cyber attacks and defenses.
The cube contains a bounded number of elements along each axis.

Adversary objectives in this attack space reflect those in the tactical/warfighting environment.

This attack space applies to the “inside adversary”. The adversary can use this inside position to apply force in the cyber domain.

Attack Classes
- Inject
- Byzantine
- Life Cycle

Adversary Objectives (in cyber domain)
- Recon
- Exfiltrate
- Disinform
- Deny

Attack Vectors (contain vulnerabilities)
- User Space
- Kernel
- Other

Adversaries will use the entire attack space to achieve their objectives.
Adversary Objectives

- **Deny**
 - Prevent use of information systems
 - Example: Take down situational awareness application

- **Disinform**
 - Provide false but believable information
 - Example: Alter video feed to insert or remove selected objects or people

- **Exfiltrate**
 - Steal information from a network
 - Example: Download battle plan or monitor blue force tracking

- **Reconnaissance**
 - Learn about network
 - Example: Run port scan to find vulnerable hosts

These adversary objectives are relevant to the tactical/warfighting environment.
Attack Vectors

- **Kernel**
 - Primary component of an operating system
 - Example: Network stack, device drivers, virtual memory manager, AIDR

- **Userspace**
 - Area of an operating system where applications are located
 - Example: Applications, middleware, network services, shared libraries, toolchain, AIDR

- **Other**
 - Reside outside the domain of an operating system
 - Example: BIOS, NICs, hypervisors, AIDR

Anything can be turned into an attack vector with the addition of vulnerabilities (intentional or unintentional).
Attack Classes

- **Injection**
 - Malicious code or data is injected over the network, from a file, or from some other input source
 - Example: Worms, viruses, rootkits

- **Byzantine**
 - One or more hosts is misbehaving with the intent of adversely affecting other hosts
 - Example: Message spoofing and replay, sybil/jellyfish/wormhole attacks

- **Lifecycle**
 - Malicious code or data are pre-inserted into software images or updates prior to deployment
 - Example: Backdoors, trojans

Attack classes represent ways of exploiting vulnerabilities.
Examples – Deny via Userspace

• The following slides provide examples of attacks in the attack space

• We slice the cube to examine Deny attacks using attack vectors in Userspace

• Each attack class is examined in sequence
 – Inject
 – Byzantine
 – Lifecycle
Example 1 – Injection

Worm designed to prevent use of a red and blue force tracking application.

- **Adversary Objective** = Deny
 - Worm payload prevents receipt and display of force tracking information

- **Attack Vector** = Userspace
 - Force tracking is an application
 - Application contains a software implementation vulnerability allowing host to be exploited over the network

- **Attack Class** = Injection
 - Worm exploits vulnerability to inject malicious code to infect application
 - Injected malicious code tries to propagate and suppress tracking info

Injection attacks infect computer systems with worms and viruses.
Example 2 – Byzantine Behavior

Misbehaving node flooding network with chat messages.

• **Adversary Objective = Deny**
 - Renders chat unusable; network congestion from flooding severely degrades other applications

• **Attack Vector = Userspace**
 - Chat runs as an application
 - Chat is vulnerable to this attack

• **Attack Class = Byzantine**
 - A single node is acting maliciously

The basic question with byzantine attacks is: “How much damage can a single computer system, acting on its own, have on the mission?”
Example 3 – Lifecycle Compromise

Deployed video player kills all applications when adversary broadcasts trigger into network.

- **Adversary Objective** = Deny
 - Adversary continues to broadcast trigger to prevent display of video feed and take down other applications

- **Attack Vector** = Userspace
 - Video player runs as an application
 - Video player intentionally contains vulnerability

- **Attack Class** = Lifecycle
 - Malicious code is triggered by message sent over the network at time of adversary’s choosing

Lifecycle attacks use a trigger to activate pre-inserted malicious code, or they enable malicious emerging behavior of always active code.
Outline

• Tactical Networks
• Theory and Doctrine
• Cyber Attack Space

Science and Technology Needs

• Recap and Closing
Cyber Warfare Science and Technology Needs

• Cyber Warfare R&D Centers
• Offensive Cyber Operations R&D
• Defensive Cyber Operations R&D
• Intelligence
Cyber Warfare R&D Centers

- Provide laboratory-based test ranges for cyber operations
- Emulate the network-centric battlespace
- Collect, share, and evaluate technology for cyber warfare
- Exercise network-centric warfare (NCW) systems through a wide range of realistic warfighting scenarios *in the presence of cyber attacks and defenses*

Benefits:
- Cheaper and faster than development and testing in the field
- More powerful cyber attacks and defenses
- Reduce risk of information assurance failures
- Platform for rapid capabilities development and intelligence product analysis
- Training ground for NCW cyber forces

Challenges:
- Rapid and large scale scenario generation
- Signal propagation and radio emulation
- Metrics (measuring effectiveness/performance of attacks and defenses, measuring cyber battle damage)
- Automation of applications
- Specialized hardware
Offensive Cyber Operations R&D

- NCW systems (tactical networks) are a new class of network requiring exploration of new technology for offensive cyber operations
- Exploration of offensive technology must cover *entire attack space*
- Benefits:
 - More powerful cyber weapons
 - Improved ability to defend US systems
 - Enhanced ability to predict offensive actions of adversary
- Challenges:
 - Tactical network analysis
 - Covert messaging and data storage
 - Information distribution and distributed control
 - Streaming media modification
 - Circumvention of hardening measures
 - Topological and byzantine attacks
 - Evasion and abuse of automated defenses
 - Offensive use of virtualization
 - Hardware-assisted attack vectors
 - Lifecycle compromises (vulnerability injection, malicious code injection)
 - Rapid composability of cyber attacks based on instantaneous tactical needs
Defensive Cyber Operations R&D

• Network-centric warfare (NCW) systems differ from traditional enterprise/internet systems and require new defensive technology

• Defensive R&D must cover the entire attack space, and furthermore must automatically sustain NCW missions in the presence of zero-day cyber attacks and emerging threats with no human analysis and response

• Benefits:
 – Improved survivability of NCW systems in presence of cyber attacks and faults
 – Force protection

• Challenges:
 – Automated detection and response
 – Defendable architectures and computing environments
 – Detection of disinformation attacks
 – Specification of legitimate behaviors
 – Hardening of automated defenses
 – Mission parameterization and awareness
 – Asymmetric cryptographic key generation, distribution, and verification for large numbers of endpoints
 – Training and adaptation
 – Out-of-band detection and response
Intelligence

• Information about foreign *offensive* efforts in cyberspace
 – Cyber attack capabilities
 – Cyber warfare and cyber weapons system initiatives
 – Details of offensive R&D programs
 – Malicious code designs and implementations
 – Collection efforts targeting US networks

• Information about foreign *defensive* efforts in cyberspace
 – Cyber defenses including cyber attack sensor technology
 – Details of defensive R&D programs
 – Enable US access to adversary cyberspace
 – Develop assets for injecting vulnerabilities and malicious code via the hardware software lifecycle

• Collection and analysis must target current and future tactical cyberspace

• IC participates in multiparty feedback loop with offensive and defensive R&D and is a *critical component*
This multiparty feedback loop yields an improved ability to defend our computing systems/networks while at the same time improving our ability to conduct cyber warfare.
Outline

- Tactical Networks
- Theory and Doctrine
- Cyber Attack Space
- Science and Technology Needs

Recap and Closing
Recap and Closing

- Tactical networks (NCW systems) are a new class of network that is wireless, mobile, subject to intermittent connectivity and high packet loss, and forward-deployed into hostile areas.

- The inside adversary cannot be ignored and must be assumed to exist.

- Cyber operations are conducted in the information domain:
 - Offensive cyber operations are designed to affect the cognitive and/or physical domains.
 - Defensive cyber operations prevent the adversary from diminishing blue force information position.

- The attack space provides a way to comprehend the full range of cyber attacks to understand the full scope of cyber threats, defensive coverage, and offensive options.

- The United States must build and sustain organizations to meet cyber warfare S&T needs:
 - Cyber warfare R&D centers
 - Offensive cyber operations R&D
 - Defensive cyber operation R&D
 - Intelligence
 - These are not products or services to be acquired, but organizational capabilities to be built and sustained!