

Hush Encryption Engine White Paper

Introduction ...3
Terms in this Document ..3
Conditions for Secure Operation ...3
Requirements..3

Key Generation Requirements...4
Passphrase Requirements...4
Data Requirements..4
Private Key Requirements ...4

Embodiment..4
Java Core ..4

OpenPGP Component ...4
Key Server Communications Component...4
Primary API Component...4

Convenience Wrappers ...5
Applet Wrapper ..5
DLL Wrapper (Hush_IEngine) ..5

Illustration ..5
Functionality..5

Initialization..5
Public Key Operations ...6

Operations ...6
Verification of Keys and Alias...6
Caching..6
State Transition Diagram..6

Authentication..7
Private Alias...7
Authentication with the Server..8
Encryption of the Private Keys ...8
State Transition Diagram..8

Digitally Signed Requests..9
Key Generation..10

Preconditions ...10
Process..10

Encryption, Decryption, Signing and Verification Operations12
Additional Authentication Functionality...12
Error Handling ...12

Error Handling in the Applet Wrapper...12
Error Handling in the COM Wrapper (Hush_IEngine) ...12

Cryptographic Implementation...12
Algorithms..12

Supported Algorithms...12
Default Algorithms..13

Handling of Key Material..13
Pseudo-Random Number Generation..13

Start-up ...13

Introduction
The Hush Encryption Engine is a client-side component, which interacts with a
corresponding Key Server and enables a variety of encryption and digital signature
operations. It maintains the best possible balance of high security and ease-of-use,
enabling developers to build high security applications that require the end-user to have
only a minimal understanding of public-key cryptography.

The Hush Encryption Engine provides only minimal user interface functionality. It
exposes an API, which a separate user interface layer should access.

Terms in this Document
Client – This is the processing device utilized by the end-user to perform key generation,
encryption, or signature operations using the Hush Encryption Engine.
Key Server – This is the processing device to which the Hush Encryption Engine
connects to store and retrieve public keys and encrypted private keys.
Alias – A string used to identify a user (an owner of a public key) on the key server. It is
usually in the form of an email address, such as “username@domain.com”.
Passphrase – A secret string, known only to the end-user and never revealed to any
other party, which is used to a) generate the value needed to retrieve encrypted private
keys from the Key Server and b) decrypt said encrypted private keys.

Conditions for Secure Operation
The Hush Encryption Engine requires that the following conditions hold true for secure
operation. All statements made in this document assume that these conditions hold.

1. The end-user is using a legitimate copy of the Hush Encryption Engine.
2. The means by which the end-user interacts with the Hush Encryption Engine

have not been compromised. This means that the user interface used to access
the Hush Encryption Engine must be sufficiently secure.

3. Data used to seed the random number generator in the Hush Encryption Engine
during key generation is sufficiently random.

4. The end-user has chosen a sufficiently secure passphrase. The Hush
Encryption Engine does not enforce passphrase length or complexity
requirements. This function should be provided by the interface layer.

5. The private key belonging to the Certificate Authority used by the Hush
Encryption Engine to verify certificates retrieved from the Key Server has not
been compromised.

6. The connection between the Hush Encryption Engine and the Key Server is
trusted, generally because an SSL certificate signed by a trusted authority
provides validation.

Requirements
The Hush Encryption Engine fulfills the following requirements.

Key Generation Requirements

1. Public and private keys must be generated on the Client machine, and stored on
the Key Server in such a way that an administrator cannot gain access to the
private keys.

2. The Hush Encryption Engine must provide a means for random input to seed a
pseudo-random number generator for key generation, and store a random seed
with the private key that can be used to provide entropy for future operations.

Passphrase Requirements

1. The passphrase must never leave the Client in either key generation or key
access.

2. Any use of the passphrase must utilize salt and iterated hashing in order to
provide maximum protection against brute force and dictionary attacks.

Data Requirements

1. All data encryption, decryption, signing, and verification operations performed on
data must occur on the Client.

Private Key Requirements

1. Private keys must never be transmitted off the Client in unencrypted form.

Embodiment
Java Core

The functional portion of the Hush Encryption Engine is written in Java, and is
compatible with Java 1.1.8. The latest source code can always be obtained at the
Hushmail.com website in the downloads section.

It contains the following sections:

OpenPGP Component
The OpenPGP component is embodied by the com.hush.pgp package and sub-
packages. It is a complete implementation of the OpenPGP standard as described in
RFC2440. The cryptographic algorithms are provided by BouncyCastle
(http://www.bouncycastle.org), and are contained in the org.bouncycastle.crypto
package and sub-packages.

Key Server Communications Component
The Key Server Communications component is a series of classes that communicate
with the Key Server via HTTPS and XML. The networking components are contained in
the com.hush.net and com.hush.hee.net packages.

Primary API Component
The class com.hush.hee.HushEncryptionEngineCore provides an exposed API, which
is the primary API that should be used by Java developers integrating the Hush
Encryption Engine into their Java application. The
com.hush.hee.KeyManagementServices class offer a finer level of control for key
management operations.

Convenience Wrappers

Applet Wrapper
The class com.hush.core.security.applet.HushEncryptionEngine is an Applet
class which exposes a LiveConnect API to allow the Hush Encryption Engine to be
utilized in a web browser context. It wraps com.hush.hee.HushEncryptionEngineCore.
In a web browser context, this applet and all required classes must be delivered in a
digitally signed package. This package will be either a JAR file
(HushEncryptionEngine.jar) or a Microsoft CAB file (HushEncryptionEngine.cab). The
methods on the applet can be accessed through either JavaScript or VBScript.

DLL Wrapper (Hush_IEngine)
The Hush Encryption Engine is available in an ActiveX DLL (Hush Encryption Engine
DLL), which can be integrated into Visual Studio applications. This access is provided
through the com.hush.hee.com.Crypto class, which is a wrapper on
com.hush.hee.HushEncryptionEngineCore.

Illustration

Figure 1

Functionality
Initialization

The Hush Encryption Engine must be initialized before any operations are performed.
Initialization is achieved by setting values that will be required by future operations. The
primary parameters that must be set during initialization are the key server addresses
and the Customer ID, which is a value used to identify the originator of new keys. For
more information on setting these values, see the API documentation.

Public Key Operations

A variety of operations can be performed using only public keys. These operations can
be performed immediately after initialization. The necessary keys will be retrieved from
the specified key servers.

Operations
Encryption and digital signature verification options require only public keys.

Verification of Keys and Alias
All public keys must be verified after they are retrieved. Verification ensures the integrity
of the key, and also ensures that the key is properly associated with the alias that was
used to retrieve it.

1. Self-signatures are verified over both key material and Alias.
2. CA signature is verified over both key material and Alias.

The CA key to be used for verification is hard-coded into the Hush Encryption Engine.

Caching
All retrieved and verified public keys are cached in the Hush Encryption Engine until the
instance of the Hush Encryption Engine is destroyed.

State Transition Diagram
Figure 2 shows the states through which the Engine passes during the retrieval of a
public key.

Figure 2

Authentication

Authentication involves the retrieval and decryption of a private key from a Key Server.
Private keys are required for all public key decryption and signing operations.

Private Alias
Private keys are indexed on the server by a value called the Private Alias.

Mixing the Alias and the Passphrase together using a secure one-way hash function
generates the Private Alias. Thus, the Private Alias cannot be associated with any
particular Alias. Any data indexed by the Private Alias, including private keys, is stripped
of any information that may associate it with the Alias. This means that private keys are
stored anonymously. If an attacker gains complete access to the database in which the
keys are stored, that attacker will be unable to determine which encrypted private key
belongs to which user, thus making the process of compromising any particular private
key significantly more complex.

The Private Alias is generated as follows:

1. A SHA1 hash function is initialized.
2. The Alias, UTF-8 encoded, is input to the hash function.
3. A newline (0x0A) is input to the hash function.
4. The Passphrase, UTF-8 encoded, is input to the hash function.

5. Steps 2, 3, and 4 are repeated until a total of exactly 1048576 (220) octets have
been input to the hash function.

6. The result of the hash function is hex encoded, high nybble first, using lowercase
letters.

Authentication with the Server
During the authentication step, the Private Alias is sent to the Key Server via the defined
protocol. The server responds by either indicating that no key for that value was found,
or by returning one or more encrypted private keys and an encrypted random seed.

Because a completely unique Private Alias is generated for every combination of Alias
and Passphrase, it is not possible to restrict access attempts based on the Alias without
compromising the anonymous nature of the private key storage. However, access
attempts may, on a per Key Server basis, be restricted based on originating IP address.
Access attempts may also be limited by the application that is utilizing the Hush
Encryption Engine.

Encryption of the Private Keys
Refer to RFC 2440 for a more detail description of the components described here.

The encrypted package in which the private keys are stored consists of a PGP
symmetrically encrypted session key packet (type 3) followed by a symmetrically
encrypted data packet (type 9). The passphrase is used to generate the session key as
specified in the packets.

The decrypted content of the symmetrically encrypted data packet does not contain a
literal data packet, as would normally be the case for an OpenPGP message. Instead it
contains a secret key packet (type 5) and a secret subkey packet (type 7). These
packets contain the secret key material with no further encryption. User ID and
signature packets may also be included, but are not necessary.

State Transition Diagram
Figure 3 shows the states through which the Engine passes during the retrieval of a
private key.

Figure 3

Digitally Signed Requests

In addition to allowing the creation of signatures on documents and the decryption of
private data, the private key allows administrative operations to be performed by
allowing digitally signed requests to be sent to the Key Server. The Key Server verifies
the digital signature on the request and verifies that the signer has sufficient permissions
to perform the requested operation.

Operations requiring digitally signed authorization include:

1. Addition/removal of domains under a Customer ID
2. Addition/removal of new administrators
3. Pre-activation of Aliases for new accounts on domains requiring pre-activation

(See: Registration Options on the Hush Key Server Network)
4. Passphrase recovery (if enabled)
5. Certificate revocation

6. Editing of public keys
7. Deletion of public keys
8. Setting or retrieving a passphrase expiration time

Key Generation

Keys can be generated on the Client by the Hush Encryption Engine and uploaded to
the Key Server.

Preconditions
Before keys are generated, the Hush Encryption Engine pseudo-random number
generator should be seeded with a reasonable amount of entropy. This can be done
either by using set seed method, or by accessing an existing private key, which will
result in the PRNG being seeded with that random seed.

A method is also provided for confirming that the desired Alias is available before key
generation. This prevents a user from having to go through the entire process of key
generation before discovering that an alias is unavailable.

See the API documentation for more information.

Process
The Figure 4 shows the process by which keys are generated and uploaded, tracking
the transfer of control between Client and Key Server.

Figure 4

Encryption, Decryption, Signing and Verification Operations

A wide range of encryption, decryption, signing, and verification functionality is available
through the Engine interface, including operations that act on text, binary data, files, and
URLs. For more information, refer to the relevant API documentation.

Additional Authentication Functionality

The Engine offers an API that can be used to store username, hostname, and password
information that can be used to log into an external service. The password is stored
encrypted with the private key. This functionality is primarily used in Hushmail to provide
authentication to the IMAP server on which email is stored.

Error Handling

Errors in the core component of the Engine
(com.hush.hee.HushEncryptionEngineCore) are handled using the exception
infrastructure that is standard in Java application. The exceptions are thrown to the top
level, where they can be interpreted and handled by the application layer as needed.

Error Handling in the Applet Wrapper
LiveConnect does not support exceptions, and so a different error-handling infrastructure
is used. When an error occurs, the associated exception is stored. A call to
getLastError will then return true. A call to getLastErrorMsg will return the relevant
error message. The intent is that after each LiveConnect call; the JavaScript should
then call getLastError to determine if an error has occurred.

Error Handling in the COM Wrapper (Hush_IEngine)
In the COM wrapper, exceptions are converted to integer return codes. See the API
documentation for information on the meanings of the different return code. More
detailed error messages, including stack trace, can be retrieved with a call to
getLastError.

Cryptographic Implementation
The Engine conforms to the OpenPGP standard as specified by RFC2440, and that
document covers most of the information needed to understand the cryptographic
functions of the Engine.

Algorithms

Supported Algorithms
The Engine supports the following algorithms:

• AES (Rijndael)
• Triple DES
• Blowfish
• Twofish
• CAST5
• IDEA
• MD5
• SHA1
• RIPEMD160

• RSA
• DSA
• ElGamal

Default Algorithms
By default, the Engine will use the following algorithms:

Symmetric Encryption: AES with a 256-bit key
Public Key Encryption: ElGamal with a 2048 bit key
Signatures: DSA with a 1024 bit key
Message Digests: SHA1 (160 bit)

Handling of Key Material

Whenever possible, key material is stored in byte arrays, which are overwritten with
zeros after use. However, in the case of public key operations, this is not possible,
because the Java BigInteger object is immutable. For these operations, it is
necessary to rely on the garbage collector in the Java Virtual Machine to clean up key
material.

Key material is never explicitly written to disk, but it could theoretically be placed in a
swap file, especially in the case of the immutable objects.

Pseudo-Random Number Generation

Pseudo-random number generation in the Engine is provided by a Blum Blum Shub
implementation using SHA1 as a mixing function. Blum Blum Shub is considered to be
one of the strongest pseudo-random number generators available. See RFC1750. The
generator is generally seeded with data gathered from mouse movement at key
generation. A random seed derived at that point from the generator is stored with the
private key, encrypted, and used as a seed in each future private key access. The
random seed is also updated at the end of sessions in which the private key is used.

Start-up
Start-up of the Engine involves a call to the init method, which initializes start up
variables and performs self-tests if enabled. The start-up variables include Customer ID
and Key Server specifications, and may include other options specific to the wrapper
(COM or applet) in use. See the API documentation for details.

If self-tests are enabled, then a brief test is performed on every algorithm supported by
the Engine. See the list of supported algorithms in the previous section.

	Introduction
	Terms in this Document
	Conditions for Secure Operation
	Requirements
	Key Generation Requirements
	Passphrase Requirements
	Data Requirements
	Private Key Requirements

	Embodiment
	Java Core
	OpenPGP Component
	Key Server Communications Component
	Primary API Component

	Convenience Wrappers
	Applet Wrapper
	DLL Wrapper (Hush_IEngine)

	Illustration

	Functionality
	Initialization
	Public Key Operations
	Operations
	Verification of Keys and Alias
	Caching
	State Transition Diagram

	Authentication
	Private Alias
	Authentication with the Server
	Encryption of the Private Keys
	State Transition Diagram

	Digitally Signed Requests
	Key Generation
	Preconditions
	Process

	Encryption, Decryption, Signing and Verification Operations
	Additional Authentication Functionality
	Error Handling
	Error Handling in the Applet Wrapper
	Error Handling in the COM Wrapper (Hush_IEngine)

	Cryptographic Implementation
	Algorithms
	Supported Algorithms
	Default Algorithms

	Handling of Key Material
	Pseudo-Random Number Generation

	Start-up

