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Abstract
 Traffi c analysis of encrypted communication in wired and wireless internetworks has 

developed into a very powerful tool for a variety of users and settings. For example, it 
has been used to break encryption in ssh sessions, re-construct speech in encrypted VoIP 
systems, break anonymity systems, remotely identify honeypots and various other bots, and 
identify and isolate participants in anonymized wireless networks.

 In this paper we fi rst survey threats to confi dentiality and security in general posed by 
traffi c analysis based attacks. We then proceed to discuss countermeasures and the diffi culties 
to correctly implement them. We will identify situations in which the naive application of 
traffi c-analysis countermeasures is detrimental to security and confi dentiality. 

 Traffi c analysis has been traditionally considered to be ineffective when large numbers 
of traffi c fl ows are aggregated and are indistinguishable. We will show how modern signal 
processing techniques enable the pre-conditioning collected traffi c data in order to separate 
large aggregates of fl ows into their individual components. 

 Finally, we will illustrate a family of attacks that renders anonymity measures in wireless 
networks largely ineffective. 

1.  Introduction
Traffi c analysis has developed into a very powerful tool for a variety of users and settings: Increasingly, 

fi ne-grained analysis of activity and traffi c in networks is being used to classify customers, to classify players in 
multiplayer games [1], to detect many forms of bots [1, 2], to compromise anonymous communication, and for 
many other objectives.
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In many settings, one can make use of only a limited amount of information in the observed traffi c streams: 
First, packet data is typically encrypted and therefore not directly available. Furthermore, header information is 
often of very limited use as well, because the real traffi c is either tunneled, or because the sender appropriately 
modifi ed the header information. After some initial fi ltering of traffi c (e.g. traffi c from trusted sources, or to ports 
that don’t lend themselves to misuse), the observer is left primarily with timing information in the traffi c only, 
and she must resort to timing-based traffi c analysis in order to recover information about the communication or 
its participants.

Traffi c analysis has many applications in system defense: In many large-scale applications we increasingly may 
want to be concerned about whether the participants in the systems are bona-fi de users, as opposed ot automated 
proxies, typically bots. Bots can occur in a variety of settings, such as game bots [1], fraudulent clickers, web 
crawlers, honeypots [2], and many others. When one has no access to all of the traffi c generated by the bot node, 
remote bot detection schemes are needed to identify such bot processes, so that then appropriate measures can be 
taken1. By their very nature, bots are designed to generate traffi c that is indistinguishable from that of bona-fi de 
users, and bot detectors must challenge suspected bots either at high level (traditional Turing test) or at very low 
level, to infer whether the timing behavior is triggered by user actions or by other timing control mechanisms 
[2].

Traffi c analysis can clearly strengthen offensive capabilities as well: Operators of networks with privacy or 
other confi dentiality requirements must take into account the possibility of observers collecting traffi c data and 
applying similar timing-based traffi c analysis techniques with the intent to violate some of the confi dentiality. For 
example, designers of protocols for low-latency applications may need to be aware that user behavior (such as 
typing patterns in ssh [3]) may be directly detectable in the traffi c pattern, with severe effects on confi dentiality 
and system security. Similarly, anonymity protocols are inherently and particularly vulnerable to timing-based 
traffi c analysis attacks (e.g., [4-6] and many others).

The objective of this paper is to illustrate the effectiveness of modern traffi c analysis by briefl y describing 
application scenarios across a number of widely disparate domains: We will fi rst set the stage by describing how 
traffi c analysis can be used to violate the security and confi dentiality of networked applications. We will then 
proceed to illustrate the diffi culties to counter traffi c analysis attacks in internetwork settings. Finally, we branch 
out to describe how fi ne grained traffi c analysis cen be married to modern signal processing algorithms to launch 
formulate powerful attacks in presumably protected wireless settings.

2.  Traffi c Analysis as Threat to Confi dentiality and Security
In this section we use a small number of examples to illustrate the effectiveness of traffi c analysis confi dentiality 

mechanisms in a number of settings.

1   We distinguish remote bot detection from traditional bot detection, for example bot detection in enterprise networks. In such 
systems, the bot detector has access to the entire behavior of the bot node. In our case, we must do with the projected subset of the 
behavior of the bot, for example the interaction of a remote game bot with one player.
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2.1.  Encrypted VoIP
A question of signifi cant interest is how much information about a VoIP conversation can be re-constructed 

through traffi c analysis of the encrypted packet stream. Such information can be the language spoken, the identity 
of the speaker, passive call-tracking, and speech re-construction.

In a preliminary study [7] we study an attacker who collects timestamps of packets on a link that carries a VoIP 
fl ow. The objective of the attacker is to reconstruct the original sequence of spoken words (symbols) from the 
collected estimated spurt lengths. For this, she computes the probability distribution , that is, the probability that 
symbol  was spoken, given that an talk spurt of length  was observed on the network, over all symbols for each 
talk spurt in the sequence.

We assume that the attacker has the opportunity to train against plaintext data by using a selection of voice 
signals, each of which represents one of the symbols. We assume that the attacker has suffi cient samples of 
each symbol so as to be able to make statistically signifi cant estimations. The encrypted transmission of the 
symbols over a VoIP channel can be represented as a discrete-time Markov-Modulated Process, where each state 
(representing the transmission of a symbol) triggers the (observable) emission of a spurt of length l. The a priori 
probability of sequences of symbols to appear in a text can be captured in form of transition probabilities between 
states in the Markov model. Since only the sequence of talk spurt lengths  is observable, while the sequence of 
transmitted symbols remains hidden, we call the model a Hidden Markov Model (HMM) [8]. During the attack, 
the observer uses dynamic programming to estimate an optimal path through the states in the Markov model 
based on the observed spurt lengths. In this way she reconstructs the sequence of words transmitted over the VoIP 
channel.

We note that the attacker does not rely on packet content, or packet sizes in her attempt to reconstruct the 
sequence of words transmitted. Instead, she relies on packet timing information only, in order to identify talk spurt 
boundaries. This attack is therefore effective against encrypted VoIP systems with CBR codecs. Several variations 
of this attack on encrypted VoIP can be formulated, such as timing attacks on systems with VBR codecs (e.g. [9]), 
speaker identifi cation, separation and traceback of VoIP fl ows, and others.

2.2.  System Confi guration Discovery
Traffi c analysis methods (timing analysis in particular) can be used to passively infer information about remote 

components (hosts, routers, and switches) in the network infrastructure. Such information is opaque in nature: 
Network traffi c for example very rarely explicitly carries information about the confi guration of a sending host. 
In addition, an intruder host or a stepping stone process, as well as an unauthorized overlay-network node, will go 
to great lengths to hide its presence in the system.

We have argued very early on [10] that timing analysis of network traffi c can be used to infer information about 
applications, system software, and the hardware confi guration of a node that sends data. More recently, various 
forms of fi ngerprinting of physical devices [11, 12] and of device drivers [13] have attracted attention. Similarly, 
host identifi cation based on thermal signatures refl ected in the host’s clock skew has been studied in [14].
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Such fi ngerprinting can be used for intrusion detection [10]. In particular, application specifi c and system 
specifi c signatures can be defi ned using bounds on timing measures, and traffi c fl ows that exceed these bounds 
can be fl agged and appropriately dealt with. Similarly, timing analysis of traffi c data can be used by attackers 
to acquire knowledge of a server confi guration (hardware, system software), and to better tailor attacks. Our 
previous work [10] used deterministic traffi c bounding functions [15, 16] and empirical traffi c envelopes [16] as 
classifi ers2 , but other measures can be used as well.

Preliminary informal measurements in our testbeds showed that different traffi c timing features of a traffi c 
stream can be used to determine different parameters of a source machine. For example, cross-correlation of 
frequency spectra of traffi c streams can be used to distinguish Linux-based machines from Windows based ones 
over a wide variety of underlying hardware platforms (including various laptops and desktop machines). On 
the other hand, the pairwise mean-square-error between the measured traffi c envelopes [16] clearly separates 
machines with different hardware confi gurations. Generally, frequency analysis exposes the timing control within 
the operating system, such as slot allocation by schedulers or timer and clock management by the system, or timing 
behavior that is dictated by feedback protocols, such as bandwidth availability or RTT in TCP/IP. Similarly, traffi c 
envelope analysis appears to expose allocated resources within the system, for example buffers at various levels.

2.3.  Bot Detection at a Distance
Most bots typically control the timing behavior of their traffi c in order to emulate user behavior (game-bots or 

crawlers) or system-level latencies (in honeynets). Bot detectors in interactive settings, for example multiplayer 
games, therefore typically challenge the bot at a “semantically high” level, similar to a Turing test, for example 
through a separate chat channel. We showed in [2] that the implementation of the timer management mechanism 
of the operating system easily shows through in form of periodicities in inter-response times in honeynets. In the 
same work we also showed that simply fi ddling with the timer resolution on the bot OS does not make the problem 
go away. We recently performed a similar analysis on gamebots in the Rangarok Online game and found a similar 
weakness3 . These results lead us to believe that effi cient “low-level Turing tests” can be developed that detect at 
a distance whether implementations of system-level mechanisms are genuine or whether they are approximated 
using emulation techniques. 

3.  Countermeasures
Given that the feature space exploited in the methods described above lies exclusively in the time domain, 

one can be easily misled to believe that simple perturbation of the timing behavior of activities and connection 
traffi c is suffi cient to prevent information leakage. This is often not the case, and we will illustrate this with two 
examples.

2 Traffi c bounding functions are used often in the QoS literature to characterize the worst-case amount of traffi c carried on a given 
fl ow. Leaky buckets are an example of such a function, where a (σ,ρ) bucket bounds the traffi c to σ+ρ*I units over any interval 
of length I). The empirical envelope is the experienced worst-case traffi c, given in units over any interval of length I. Any valid 
bounding function bounds the empirical envelope.

3 Several Gamebots in the Rangarok Online game were analyzed in a similar fashion in [1]. In this work the authors measured round-
trip time, as opposed to inter-response time of the gamebot, and therefore had a much weaker classifi er. The authors developed 
strong classifi ers by using other specifi c characteristics of the bots. 
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3.1.  Effectiveness of Link Padding
The motivation of link padding is to ensure traffi c fl ow confi dentiality, i.e., to prevent the adversary from 

performing traffi c analysis and inferring critical characteristics of the payload traffi c exchanged over unprotected 
networks. We limit the adversary’s interest to payload traffi c rate, that is, the rate at which payload traffi c is 
exchanged between protected subnets. 

One way to counter the traffi c analysis attacks is to “pad” the payload traffi c, that is, to properly insert “dummy” 
packets in the payload traffi c stream so that the real payload status is camoufl aged. The most common method 
to implement padding uses a timer to control packet sending and works as follows: (a) On the padding node, 
incoming payload packets from the sender Alice are placed in a queue. (b) An interrupt-driven timer is set. When 
the timer times out, the interrupt processing routine checks if there is a payload packet in the queue: If there are 
payload packets, one is removed from the queue and sent to the receive. Otherwise, a dummy packet is sent. In 
order ot simplify the network management, this timer often uses a constant interval, and periodically fi res with a 
constant interval between two consecutive timeouts.

Unfortunately, such padding mechanisms are susceptible to traffi c analysis. For example, we show in a series 
of experiments how link padders with constant timers fail to protect against passive traffi c analysis [17] and 
random link padders against active traffi c analysis [18].

3.2.  Effectiveness of Mix-Based Anonymity Networks
Anonymity preserving technologies have been proposed and used to mix traffi c in different ways to protect the 

privacy of anonymity network users, that is, to make senders and/or receivers non-identifi able. Current anonymity 
networks such as TOR [19] and Onion Routing [20] mix network traffi c by aggregating a large number of network 
connections in the spirit of that it is easier to hide in crowds. Other mixing procedures such as batching, pooling, 
and re-ordering of packets may also be applied to mix traffi c as it traverses the network.

Experiments [5] have shown that naive mixing in networks is largely ineffective against fl ow traceback attacks. 
More importantly, we have shown that batching of packets to prevent direct correlation in the time domain is 
actually detrimental for TCP traffi c. Batching increases queuing variability, which in turn leads to a more visible 
timing footprint of TCP fl ows.

4.  Traffi c Analysis in Wireless Settings
We show in [21] that traditional schemes for anonymous communication in wireless settings, such as masking 

of MAC addresses and link padding with dummy traffi c, are largely ineffective against statistical timing analysis 
of network traffi c in terms of location privacy. We also found that motion privacy can not be protected as well.

In fact, an attacker can compromise - with the help of a collection of very simple sensors - the location privacy 
in a densely populated, perfectly anonymized wireless network. We call the sensors “simple” because they only 
need to monitor packets at MAC level or above, do not require directional capabilities, do not need to distinguish 
packets or relate network packets to senders or receivers, only require coarse time synchronization support, and 
require only low-bandwidth links for inter-sensor communication. (We don’t need support for signal-strength 
measurement on the sensors either.) Such collections of sensors could be realized by a number of WLAN users 
that collude and exchange information, or by a separate infrastructure of sensor nodes, such as a sensor network. 
Given these limited required capabilities, we use the sensors to count packets over intervals of given length, 
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and to forward the resulting time series of packet counts for analysis to some central location. No information is 
available about how many nodes are present and sending in the area, and the anonymity measures in the WLAN 
prevent the sensors from distinguishing packets sent from different nodes.

We can use statistical signal analysis methods to (a) estimate the number of nodes in areas of the network 
(we call this node density) and to (b) separate the overall traffi c into estimates of actual traffi c sent by nodes in 
the network to pinpoint the location of sending nodes (node location). For the node-density estimation we use 
Principal Component Analysis (PCA). PCA is a classical statistical method used to reduce the dimensionality in a 
dataset. It can represent a dataset of correlated variables with less uncorrelated variables, which are called principal 
components. For the traffi c separation we use the Blind Source Separation (BSS) method [22]. BSS was originally 
developed to solve the cocktail party problem, where the goal is to extract one person’s voice signal given a 
mixtures of voices at a cocktail party. BSS algorithms solve the problem by taking advantage of the independence 
between voices from different persons. Similarly, in wireless networks, we can use BSS algorithms to separate 
traffi c from different wireless nodes. The separated traffi c is not in a form that can be directly associated with 
any sender node. However, we take advantage of spatial diversity in the collected data to reconstruct the sender 
location based on the separated traffi c.

The poor performance of link-padding based anonymity protocols in wireless settings is due to a large part to 
the underlying carrier-sensing based MAC protocols, which perturbs the originally padded traffi c, and so renders 
it susceptible to traffi c analysis attacks. With privacy of users in mind, we will need to re-evaluate the use of 
carrier-sensing based versus scheduling based MAC protocols and how to trade-off privacy versus effi ciency in 
such systems. One possible solution is to use TDMA-based MAC or hybrid protocols, such as Z-MAC [23], in 
order to trade-off between privacy and performance.
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