Suggestions from the Defense Advanced Research Projects Agency

Army After Next

October 1996
Updated 1 May 1997

Larry Lynn, Director, DARPA
Dr. David A Whelan, Director, Tactical Technology Office, DARPA
John H. Gully, Land Systems, TTO, DARPA

Dr. Joe Braddock
Mr. David Heebner
Dr. Walt Laberge
Mr. Chip Pickett

Col Roy Alcala, USA (R)
Gen John Foss, USA (R)
Gen Paul Gorman, USA (R)
Col Mike Harper, USA (R)
BG Hal Nelson, USA (R)
Col Mike Shaler, USA (R)
Col Glenn Snodgrass, USA (R)

MG Ray Franklin, USMC (R)
LtG Jerry Granrud, USA (R)
Gen Al Gray, USMC (R)
Mr. Dave Hardison
Some Suggestions for Army After Next

A Paper Version of a Hypertext Report

Background. In May 1996 Larry Lynn directed the Office of Tactical Technology (TTO), DARPA, to develop some concepts that might be useful to Commander, TRADOC, as his deputy chief of staff for doctrine moved ahead with the Army After Next Project. John Gully of Land Systems, TTO, took the lead, and convened an informal study group, listed on the outside front cover, that met from time to time throughout the summer. DARPA's PMs were participants, as were a number of experts from industry and academia. When there was a recognizable thesis, it was presented to the red team, and adjusted accordingly. In October the results were briefed to the TRADOC principals, and in November to the TRADOC staff.

Study Guidance. We were tasked (a) to "think out of the box," (b) to present tactical concepts that would exploit foreseeable technologies, and (c) to portray these in a variety of plausible politico-military scenarios. After some debate, we proposed to Larry Lynn that we bypass (3): the tough issues of "plausible scenarios," "peer competitors," "locus of conflict," etc., seemed to us far less important and far less certain than what we could project as strengths of the United States 20 years hence, and what we could reasonably assume would then be this country's continued role in the international order.

Report Format. We adopted the "rolling briefing" procedure familiar to Defense Science Board studies — iterative improvement and augmentation of a set of charts. We calculated, however, that an important part of our message was our medium and method: we undertook to build the charts in hypertext, using the venerable, austere graphic program of that name. Our first step was to lay out the study architecture shown on the chart opposite, which we refer to as the "AAN Map." We defined three broad areas for inquiry and input:

Planning (what is the problem, and how should TRADOC think about it?)
Required Capabilities (what should be expected of land forces 20 years from now?)
Enabling Technologies (what can science and engineering do to meet such expectations?)

Within each of these three areas, we built "stacks" of charts to which all participants contributed. Most transactions to add, modify or subtract from charts were by E-mail. The master set of charts was maintained on a single 3.5 inch disk (<1.4MB), and ultimately was presented to TRADOC via a computer-driven projector, backed by a disk. DARPA, however, insisted upon paper output, of which this notebook is a descendant.

This version records what we turned in October 1996. There have been few changes since 1996 beyond correcting spelling errors, eliminating duplication, and adding hyperlinks.

Salient Concepts. There are two dominant themes:

Go with the commercial flow [e.g., Stacks 3, 15, 16]

Focus AAN on early entry: project a corps-worth of combat power anywhere in the world within 72 hours [Stack 8] by (1) re-engineering means for direct and indirect close-support fires; (2) adopting new classes of lighter and more capable land vehicles and ubiquitous UAVs; (3) devising new information systems [Stacks 6, 17, 26, 21, 25]; and (4) finding fast, high-capacity airlift and sealift so that Force XXI remains strategically relevant [Stacks 15, 16, 19, 23].
• Why does US need Land Forces (Army, USMC)?
• Why not rely on precision weapons delivered by air?
• Can technology make Land Forces more cost-effective?

Every President, as Commander-in-Chief, has ordered land forces into action.

Recent Presidents have been demonstrably more willing to commit land forces overseas:

1950-1989: 10 major deployments
1990-1997: 27 major deployments
Today: 35,000 troops in 70 countries

The Anxious August of 1990:

Drawing the "Line in the Sand"

6 Iraqi heavy divisions with +1000 T-72 MBT within 200 miles of air and seaports of debarkation in Saudi Arabia

Desert Storm

• Army shipped 2.2 million tons dry
• 60% total was ammo, mainly arty
• Army returned 1.6 million tons dry
• Not clear what was fired at enemy
• USAF delivered 70,000 tons of ordnance; 40 tons of fuel per ton delivered

Desert Storm

500 Ship Loads
9000 Aircraft Loads
Delivered +3,000,000 tons
12,000 tracked vehicles
114,000 wheeled vehicles
38,000 containers
300,000 tons of ammunition

Why commit land forces?

- To deter the use of violence for political purposes
- Evidence U.S. determination
- Enhance allies
- To control territory and people
- Forestall or redress aggression
- Destroy or neutralize hostile forces
- Separate combatants
- Conduct humanitarian operations
- To secure bases for air and sea forces
- To discriminate in using firepower
- To win conclusively
 - Delay, disrupt, or deceive hostile forces
 - Enable decisive fires and dominant maneuver
The Current Division

~ 17,000 men (~ 2000 tons)
~ 5,000 vehicles (~1500 tracked)
~ over 100,000 tons combat loaded
~ 2,500 tons per day of all classes of supply, spares, and consumables

Tactical mobility high
Strategic mobility low
Logistically burdensome

Possible Technology Interventions

✓ Develop rapidly deployable artillery
✓ Lighten the AFV fleet
✓ Reduce manpower in combat theater
✓ Deliberately align Army with commercial thrusts

✓ DARPA technology can assist

The Make-weights

- Armored and tracked vehicles (65%)
 - Tanks, IFV
 - Artillery
 - Engineer vehicles
 - Provisions for sustaining same
- Fuel and dry cargo lift fleet (~20%)
- Artillery ammo (~50% resupply)
- Fuel (~25% resupply)
Assumptions
re the
Army After Next

AAN is IOC 2016 (20 years hence)
Exploits lessons, legacies, from Force XXI but comparatively affordable, and significantly more effective.
Structural and doctrinal reforms useful, but must be technologically attainable, and reasonably affordable.

- AAN must be important to the NCA in all phases of any crisis

Deterrence	Sustained Operations on Land
Preemption	Setting the conditions
Early Entry	Decisive engagements
Permissive	Transition to peace
Forcible	Return to normalcy

* AAN: ready for the entire spectrum of conflict

Humanitarian Relief	Minor Contingencies
Peacekeeping	Major Regional Contingency
Permissive	Multiple wars
Forcible	Global war

- AAN must be capable of coping with a broad range of threats, ranging from:
 - conducting large-scale operations on land to contest a foreign aggressor
 - providing aid to domestic civil authority
- AAN must be configured to fight overseas under a unified command within a coalition
Build On U.S. Supremacy in 2016 in Business Related to...

- Information technologies
- Space and exosphere
- Civil aviation
- Transmodal shipment
- Directed energy
- Bio-pharmaco-technology
- Microelectrical Mechanical Systems

Commerce will outpace DoD in capacity, rate of change. AAN must follow that lead, help shape outcomes.

Information Technologies

- Computing
- Geolocating
- Communicating
- Sensing
- Cryptography
- Multi-source fusion and filtering

Space and Exosphere

- Commercial global cellular telephony
 - High-capacity terrestrial trunks
 - Ubiquitous broad-band wireless connectivity
- Cheap-launch capability
 - Satellites on demand
 - In-orbit servicing
- Crisis area overwatch
 - Constant-stare
 - Focused-ear

Civil Aviation

- Passenger
 - Improved commuter service (VTOL?)
 - Wide-body long haul
 - High-speed intercontinental service
- Freight
 - Automated, digitally-managed materiel handling
 - Total asset visibility
- Automated air traffic control

Directed Energy (DE)

- U.S. has lead from SDI
 - DEW by 2002, RF weapons by 2007
 - Particle beam weapons by 2016?
- Deployable DE weapon system (forward air defense) now in development
- DE appears apt for AAN
 - Highly discriminate:
 - Precision aim
 - Tuned power
 - Useful in MOBA
 - Logistically superior to missiles

Transmodal Shipment

- Most trans-oceanic commerce will be container-borne
- Fast (~35kt) container ships are probable
- Iso-containers are congruent with prime needs of land forces:
 - Packaged for strategic mobility
 - Transmodal (truck-rail-air-sea)
 - Inherent shelter from which to work in which to live (cover and concealment)

BIO-PHARMACO-TECHNOLOGY

- Pharmacologic syntheses
- Bio-fabrication
 - Designer microbes for organic processing and conversions
 - Synthetic DNA for novel structures e.g., optical data storage
- Bio-mimetics
 - Systems that emulate living organisms or organic materials
 - New armor, comms, power sources

Micro-electric Mechanical Systems (MEMS)

- Silicon-based, chip-level manufacturing
- Throw-away entities
- Enables:
 - Networks of very small, taskable machines
 - Very small turbo-generators, jet engines
 - Self-instrumented structures
 - Hyper-portable navigational systems
 - Cooperative RSTA/C3I
Stack: Investment Strategy

• Over the past two decades, the Army has bought impressive new capabilities for mounted warfare, powerful, mobile combat support, and extensive combat service support.

• Light forces have not been comparably improved. MOUT readiness is low.

• Cultural imperatives and inertia have created strong propensities for more of same.

DOD TOA likely estimates or double estimates

* USAF, USN systems will dominate

• Three broad alternatives
 - (1) Win over OSD/Congress to Army logic
 - (2) Subvene OSD with Congress/Transiters
 - (3) Army vision ~ OSD/Congress’ priorities

• (1) is on the record unproductive
(2) is dubious ethics, shortsighted
(3) works: USAF, USN, USMC formula

AAN Investment Strategies

— Demonstrate that the Army is serious
— "Open mind, "thinking out of the box"
— Work future back vs. present forward
— Bold vs. creeping adjustment
— Seek new allies, especially in business
— Use simulation to create AAN converts
— Buy "leaner" and "meaner" and "fewer" as opposed to "bigger and more"

AAN Investment Strategies

— Leverage investments by other services
 * USAF, USN lead in missile technologies for space, air-to-air, air-to-ground
 * Army missiles should spin-off ground-to-ground, ground-to-air versions
 — Communications must clone commercial
 * Legacy SINCGARS, MSE won't cut it
 * Business (and AAN) needs bandwidth
 * AAN should shape encryption, weight, power, field interfaces

Army Modernization is Gravely Underfunded

— Total Army FY 97 TOA is 25% of DoD's $244B
— Army RDA TOA is 14.4% of DoD's $73.3B
 — USAF 39.3%; USN 30.9%; DoD 15.4%
 — Army RDA is down 66% from 1985
— Of DoD top 20 modernization programs:
 — Army has only 3 (artillery piece, helo, tank)
 — Army programs amount to only 7.2% of total
 - USMC 8%; USN 37.5%; USAF 36.2%
 - OSD 10.3%
— Army’s arty piece is 60 tons; tank is 71 tons

OSD, Congress have been buying:

— Support for CINCs
 * OOTW LIC
 * Counters to WMD
 * Systems for the Information War
 * Focus of the "onset of war"

— Pilot Projects
 * Acquisition reform
 * Industry participation
 * Joint and combined forces

— ACTD

AAN Investment Strategies

— Accept a differentiated force
 * Heavy and light units
 * Modernized and older unit sets
— Priority for early entry forces
— Seek economies and efficiencies:
 * Smaller, fewer headquarters
 * Lean combat support
 * Drastically reduced in-theater CSS

AAN Investment Strategies

— AAN should seek to influence subsidized industries
 * Civil Reserve Air Fleet (CRAF)
 * Merchant Marine
 * Intermodal transportation means
— AAN should attempt to adapt for its purposes the results from growing R&D (governmental and private) in health care and public safety
Stack: Investment Strategy

AAN Investment Strategies

- AAN should seek new acquisition paths, such as projects intermixing Army RDA funds with industrial IR&D, and inviting industrial participation in the setting of the requirements for new systems
- AAN should facilitate involving the CINC of the U&S commands in its modernization decisions

AAN Investment Strategies

- To dominate onset of any prospective war
 - Avoid arguments re corps Vs. corps
 - Move to “fustest with the mostest”
 - Emphasize Army’s proven abilities with allies
- To counter asymmetric threats
 - Limit vulnerability by constraining presence
 - Minimize materiel positioning in-theater
 - Echelon-back: extra-theater or off-shore
- To align with commercial main thrusts

STACK 4

p. 2
Force XXI is seen as "modernizing for yesterday"
- USAF fighters, sensors, munitions
- USN arsenal ships
- USMC Sea Dragon

"Digitization" = appliqué on NATO GDP
"Overwhelming" = massive personnel, materiel

Army procures huge numbers at low cost per unit

Marketing AAN

- Convince the Congress and the American people that AAN is necessary and affordable
 - Can overmatch any foe from peers to terrorists
 - Evolves from Today's Army and Force XXI
 - Steward of traditions, esprit, ethos
- Emphasize (1) early arrival, and (2) boosted situational understanding to:
 - Deter, paralyze, deceive vice destroy foe
 - Destroy by precise fires vice close combat
 - Protect force by (a) precision CSS; (b) dispersion; and (c) high P_b, P_k

Propose modernization consistent with foregoing. E.g.:
 - Aim at a 10 ton AFV vice 40 tons
 - Stress deployability, versatility
 - Minimize CSS, CS elements

Conduct exercises to show that AAN:
 - Can get to any conflict and win
 - Can do so with minimal casualties
Distributed Combat Developments

- Collaborate among the Army's branches to design new concepts and materiel collaboratively via:
 - Leading Edge Services (DARPA/DISA comm)
 - NOTES-like interactivity, shared database
 - Merge C4I with DIS; adopt HLA for C²
 - Internet video, voice, data connections
- Exploit service-to-service links and joint/OSD agencies
 - Evaluate early and often
 - Simulate first to establish requirements with warfighters

AAN Should Seek New Acquisition Paths

Suggestion:
DARPA propose to USD(A), with TRADOC concurrence, a cooperative development project for exploration of the concepts for rapidly deployable modernized artillery — what DARPA refers to as "advanced fire support system."

(1) A DARPA-industry-TRADOC analysis of alternatives
(2) A TRADOC sponsored STOW simulation of feasible system(s)
(3) A JCS-sponsored ATD with prototypes within 5 years

Four DARPA Initiatives

1. Lead industry in an assessment of commercial contributions to military mobility:
 - Intercontinental projection of land power
 - Lighter, more sustainable overland vehicles
2. Demonstrate low-cost indirect fire rockets (boost-glide)
3. Execute the SUO program
 - Comm/geo location for restrictive environments
 - Technology for teamwork: UAV/wide-aperture sensors/recorders, precision individual weapons/combatives = sensor platforms
4. Define simulative methodology and technology needed to delineate joint requirements and prototypes for 2016+
Therefore...

- DARPA Study’s findings and recommendations will ultimately be evaluated against politico-military scenarios with these measures of effectiveness:
 - more affordable than Force XXI
 - significantly more capable
 - developmental risk acceptable
- Further, evaluation will weigh extent to which AAN meshes with the capabilities of the other services
The Army After Next will be ready:
- To project a force more powerful than a present-day corps as the land component of a joint task force
- Within hours of NCA decision
- Anywhere in the world
- Able to fight on arrival and to sustain
 - Decisive combat support
 - Efficient combat service support

AAN Intervenes:
Decisively, Early, Jointly

Why commit land forces?
- To deter the use of violence for political purposes
 - Evidence U.S. determination
 - Enhance allies
- To control territory and people
 - Foreshall or repress aggression
 - Destroy or neutralize hostile forces
 - Separate combatants
 - Conduct humanitarian operations
- To secure bases for air and sea forces
- To discriminate in using firepower
- To terminate conflicts
 - Delay, disrupt, or deceive hostile forces
 - Enable decisive fires and dominant maneuver

Heavy Force Deploys Slowly
- Division large and ship/port dependent
 - 100.00 tons (of which men alone ~2000 tons)
 - Many movers: 15,000+ soldiers, 5000 veh, 1500 tracks
 - 65% weight in AFV, Arty. Eng tracks
 - 20% weight in lift for fuel, dry cargo
- Logistic tail no less onerous
 - 2,500 tons per day all classes of supply
 - 50% resupply: artillery ammo
 - 25% resupply: fuel
- AAN must derive combat power with:
 - Less weight and cube
 - More efficient soldiers, vehicles, and fires

"Fustest with the Mostest"
The Advantage of Early Intervention
- The ability to intervene early and decisively is the essence of deterrence
- To suppress a crisis early saves blood and treasure
- Military capability broadens diplomacy
- Few crises eventuate in war, but all breed conflict

Current Build-up for Counter-offensive
AAN Build-up for Counter-offensive
One Vision: in 20 Years...

- Combat forces 33% of current manning
 "Depopulate the zone of vulnerability..."
- Firepower 100% that of present force
 "Situational understanding, precision fires..."
- Teeth-to-tail ratio (in-theater) > 1.0
 "Less vulnerability to asymmetric counters..."
- Logistics just-in-time vice just-in-case
 "Total asset visibility, precision delivery..."
- Maintenance by need vice schedule
 "Detect, remove, replace, as coached..."
- Acquisition fueled by engine of commerce
 "Market driven, like business..."

The Army After Next

will have to be...

Strategically mobile
Tactically Agile
Overmatching
Logistically Efficient
Medically Assured
Superlatively Manned
Strategically Mobile

- Able very rapidly to insert effective early-entry forces directly into a hostile environment, to stabilize the situation, find and fix enemy forces, and establish control of territory and population.
- Minimum footprint in the objective area.
- Maximum utilization of commercial means for both deployment and sustainment.

RATIONALE

- AAN cannot expect other services to design and invest in mobility platforms to project AAN
 - Scarce military airlift, priority to own needs
 - Constrained "Amphibious" sealift
- Instead, AAN must be configured to exploit fast commercial lift, prepositioning, and sea-basing
 - CRAF: PAX and freight
 - Containerize essentials
 - Mobile Offshore Bases (MOB)
 - Logistics Over the Shore (LOTS)
- Hence, split-based operations will be normal

"Fastest with the Mostest"
- one division within one day of decision
- one corps within three days
- Significantly fewer personnel on the ground
 - Relocate back C4I, CSS
 - Extensive reliance on sensors, data distribution
 - Lighter, more supportable vehicles
 - Modernized artillery for close support
 - Reliance on USAF and USN for air superiority
 - Broad resources to commercial airlift via Civil Reserve Aviation Fleet (CRAF)
 - Pervasive containerization
 - Commercial shipping
 - Operate either from the sea or ashore
 - Mobile Offshore Bases (MOB)

A Distinctive Modus Operandi:

- Combat Support (CS) and Combat Service Support (CSS) mainly from outside theater using Intercontinental civil air & fast ships, MOB, and LOTS
- CS entails modernized artillery
- CSS entails extensive "containerization" total asset visibility (TAV), and vigorous interaction with intermodal shippers.
Overmatching

- Being **overpowering** in battles and engagements
- Always **having the initiative** in the campaign
- Remaining **in control**
- Successfully **protecting the force**
- Leveraging **joint capabilities**

Operationally Adroit

- **Must dominate variable battle space**
 - **Speed** — act faster than enemy can counter — all systems — all levels — fires, maneuver, info-strikes
 - **Space** — variety of terrain, geography, enemy forces — CONUS to FLOT and beyond
 - **Timing** — unprecedented simultaneity
- **Battle Command** less encumbered to enhance flexibility

Overwhelmingly effective, able to...

- Exploit enemy weakness and counter strengths
- **Act on superiority of joint forces and fires**
 - Allow enemy no sanctuaries
 - Discriminate, crippling targeting
- **Dominate in information warfare**
- **Limit own vulnerabilities**
 - Defenses against WMD, TBM, CM
 - Logistic tail outside combat zone
 - Strong air defense for deployed forces
- **Employ denial and deception, control tempo**
Technology for Teamwork

- Teams are what count, not individuals
- Integral with teams must be technology:
 - for mobility
 - for situational understanding
 - for sustainability
- All combatants operate in or with air or ground vehicles
- All entities are under constant control
- All entities are sensor platforms

Our aggregate tactical weakness stems largely from this... We have encouraged the man to think creatively as a person without stimulating him to act and speak at all times as a member of a team. The emphasis should be kept eternally on the main point: his first duty is to join his force to others!

[Team] unity comes to full cooperation between each man and his neighbor. There is no battle strength within the company or regiment except as it derives from this basic element within the smallest component...

B.L. A. Marshall, War Against Fire, 1947

Tactical C⁴I

- Low power, cellular, spread spectrum: thousands of subscribers with short-burst data, plus a subset with service for imagery and data streams as well
- Redundant nets, versatile wave forms adaptable to circumstance; multi-mode radios
- Portable base stations for cells in combat zone, capable of geo-positioning transmitters, and interfacing with GPS and INS for assured 3D locus
- Interfaces with legacy and long-haul comms
- Network reconfigurable at will to reflect changing tactical relationships

Why Structure Around Teams?

- Individuals or pairs unlikely to:
 - Provide for close-in situational awareness
 - Cope with medical emergencies
 - Operate continuously
- IF tactically agile, unit/team size:
 - Seven (-) for 360° security, fire and movement
 - Fourteen (-) for relentless day/night operations
 - Optimize for targeting, controlling fires
- Reduced tactical presence lever CSS

Relentless Combat

- AAN will have technology to fight 24 hours per day, day in and day out
- Persistent, high tempo operations offer clear advantages over potential foes, particularly when coupled with information warfare
- Out-manuver the foe in mind, in time, in space
- But three preconditions must obtain:
 - Sufficient teams/crews to assure proper sleep
 - Situational understanding for guaranteed effect on enemy
 - CSS sufficient to sustain the pace

Tactically Agile, able to...

- Engage relentlessly, day or night
- Move at will in three dimensions
- Multiply the situational understanding and firepower of small teams to:
 - Assure cohesion and interoperation
 - Deter, paralyze and deceive the enemy
 - Destroy enemy with discriminate fires
- Reconfigure C⁴I at will
 - Form a network of networks
 - Broad band connectivity to every combatant
 - Interact with aviation and AFV

Technology for Teamwork

- A 3D terrain data base that can be current and responsive to each combatant. N.B. definition requirements vary by orders of magnitude:

<table>
<thead>
<tr>
<th>Medium</th>
<th>Operations Area</th>
<th>LOS Range</th>
<th>Altitude Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital</td>
<td>10 km</td>
<td>50 meters</td>
<td>0.5 km</td>
</tr>
<tr>
<td>Analog</td>
<td>5 km</td>
<td>12 meters</td>
<td>1 meter</td>
</tr>
</tbody>
</table>

- Exploit forward-deployed personnel and vehicles as sensor platforms, for acoustic arrays, distributed MTI
- Position redundantly: GPS, INS, LORAN, cellular
- Track physiological readiness of each combatant, automatic reporting of homeostasis
- Embed AAN TES within C⁴I
Logistically Efficient, *able to*...

- Manage via full and continuous asset visibility
- Resupply on demand
 - Air delivery precise to time and place
 - Robotic vehicles
 - Minimal stockage, personnel in combat zone
- Maintain on need, *vice* schedule
 - Continuous monitoring by MEMS
 - Mentored remove/replace forward
 - Seaborne, containerized CSS units

Changing the In-Theater Teeth-to-Tail Ratio

- **Reduce In-Theater CSS to the minimum**
- **Move from "just-in-case" to "just-in-time"**
- **Leverage industry**
 - Regional procurement
 - Transmodal transportation
 - Informatics
- **Echelon back** — take no one into theater who can, using modern communications, function from outside
- **Maintain on-line logistics data, distributed to all commanders with need-to-know**
Personnel Policy Implications

• AAN will be in a state of constant readiness, hence:
 - Conscription offers no support for AAN
 - Reserves can figure in AAN, but only in roles
 for which they can maintain requisite readiness
• AAN combat team manning must be highly selective
• Present approaches to recruiting and training must be
 modified to accommodate:
 - The requirements high proficiency
 within each small team
 - The new-old mix of equipment within the
 Army overall

Training

• Reconfigure current distinctions:
 - Initial Entry Training
 - Advanced Individual Training
 - Unit Training

• AAN training should look like this:
 - Initial Entry Training
 - Team & System Training

• Requirements for TRADOC in support of AAN:
 - Training developments ahead of AAN fielding for
 both individual and collective training
 - Embedded training within on-coming AAN materiel
 - Training enablers (job aids, devices, simulators,
 simulations- constructive, virtual, live)
 - Effective, pervasive distance learning mechanisms
 and technique

AAN: Rigorously Trained, able to...

• Conduct STOW-like training anywhere for all
 units
 - Generate quickly required terrain data
 - Develop collective skills, rehearse operations
• Use C4I system to capture data for AAR,
 feedback to combat developments process
• Support most individual training in units (as
 opposed to schools or training centers)
 - Use organic communications and/or embedded
 training
 - Employ satellite TV and Internet
• Access TRADOC schools continuously via DISA
Medically Assured, able to...
- Monitor continuously physiologic readiness of each combatant in zones of high hazard
 - Automatic alarm, locus/first aid/evac
 - First line of defense against BW attacks
 - Deploy supplemental sensors of NBC weapons
- Use telemedicine far-forward
 - Mentor unskilled first aid/stabilization
 - Remotely-controlled bio-drug infusion
 - Iso-container-housed field hospitals
 - Swift, sure evacuation from theater

Personnel Status Monitor (PSM)
- DARPA/AMEDD development to date
- Vital signs sensors+GPS+computer+radio
- Currently < 5 pounds, in LBE harness, optimized to warn of the onset of hypothermia
- Tested by Rangers in July 96, found useful for command and control: tracked Rangers even when swimming river, showed NCOs location each man
- Conforms to DSB vision: a cellular, spread spectrum, LPI/LPD communication system on every soldier
- Insurance against MIA, and against wasting medics trying to reach corpses

Practice in Combat Casualty Care
- PSM enables distributed interactive simulation (DIS)
- Underwrites medical subsystems for all forms of simulation — live, virtual, constructive
- Numbers of patients, type injuries flow from simulation
- Virtual patients realistically train medics, doctors
- Contribute to development of military telemedicine
- Telemedical data streams — intelligence data streams
Commercial Overseas Shipping Trends

- Time-sensitive, high-value cargo provides impetus
- Newer container ships will double in size
- New containers of composites for strength, lightness
 - For air (EM transparent for TAV, inspection)
 - For sea (protect items from maker to seller)
- Broader use of RO/RO in high-payoff trade
 - Self-propelled vehicles
 - Air-cushioned pallets for containers
- Hyper-speed ships operating between dedicated ports
- Air cargo fleet expanding (wide bodies, comm C-17)
- Air freight providers lead the way:
 - Robotic loading
 - Pervasive TAV, containerization, inspectability
 - Integrated, end-to-end, information-based system

Total Asset Visibility

- Continuous control over units, people, and materiel
 - Transmodal; functions on land, at sea, in the air
 - From CONUS origins to overseas employment
 - Precise information on locus, condition, custodian
 - Rapid adjustment of flow, swift replenishment
- *Sine qua non* for:
 - Significantly more rapid force projection
 - Efficient SUO (highly aware, agile tactical elements)
 - Adoption of a distributed indirect fire system
 - Scrapping just-in-case logistics for just-in-time
 - Altering drastically the teeth-to-tail ratio

Transmodal Force Projection

Assuming TAV and Extensive Containerization

CONUS

APOE

Theater

Employment

SPOE

road-transit
by truck

APOS

road-transit
by truck

Post/Depot/Factory

road-transit
by FastShip

 CONTAINERIZATION

- JIT logistics entail TAV and extensive containerization
 - Military now lags commerce
 - Gap will probably widen
- Trends dictated by costs:
 - On North Atlantic, shipping is 10-15% of costs
 * Average ship now 2500 TEU (20 ft equiv units)
 * Newer ships 5-6000 TEU
 - Terminal (port) operations are 85-90% of costs
 * Fastest terminals crane-off 150 containers/hr
 * New ships outmode current terminals: ~ 2 days!
- Hence, strong incentives for:
 - More durable, lighter containers
 - High speed unloading methods
The FastShip Initiative

- Commercial ship trends are generally adverse for AAN:
 - Larger container carriers needing mega-ports
 - Fewer US flag carriers; current status:

<table>
<thead>
<tr>
<th>Owner</th>
<th>Total</th>
<th>US Built</th>
<th>Age<16 (US Built)</th>
<th>Age>6 (US Built)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USG</td>
<td>6</td>
<td>5</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Pvt</td>
<td>76</td>
<td>37</td>
<td>41 (10)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>RO/RO USG</td>
<td>35</td>
<td>8</td>
<td>5 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Pvt</td>
<td>37</td>
<td>15</td>
<td>20 (7)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

- FastShip is U.S. venture to ship high-payoff containers:
 - In broad-beam hulls with water-jet propulsion
 - All cargo in-hold, RO/RO using air-cushion pallets
 - At speeds above 35 knots on North Atlantic, Pacific
 - Appears to have military potential:
 * 1 Foe XXI Hvy Task Force & 2 AirCav Sqdns @ 38 kts
 * Range 1050 miles per day, or 7300+ miles per week, all weather

Opportunities for AAN Exploitation

- Explore CRAF support for AAN initiatives
 - LIFR, Combat Casualty Support, parachute delivery
 - Carbon-winged, up-engined commercial C-17
- Experiment with new air and sea containers to ascertain:
 - Relevance for rapid deployment
 - Adaptability as in-theater shelters
 - Capacity for hardening against ballistic, WMD threats
 - Applicability for munitions shipping (e.g., LIFR)
- Cooperate with commercial carriers to develop:
 - Interoperability of info management, pallets, containers
 - Practical, CINC-exercised contingency plans
- Adapt commercial systems as primary deployment using:
 - Airlift, for the AAN C+1 division and the C+3 corps
 - Sealift, for sustainment and follow-on echelons

Transmodal Shipping Technology

- Containers of composites
 - E.g., thin-shell polycarbonate
 * Tensile strength 9,000,000 psi
 * Strength compress, flex ~ 13,000 psi
 * Shear modulus 114,000 psi
 * Elasticity modulus 340,000 psi
 - Less tare, better system conformity
 - Usable as shelters; easy to cover, conceal on land
- Means to load/unload containers 4 to 6 X faster in port
 - E.g., ALICON airlifted pallets for containers
 - Graceful interfaces with trucks, rail cars
- Current thrusts aimed at FastShip, but:
 - Appears useable for conventional ships
 - Adaptable for military requirements in austere ports?
Civil Reserve Airfleet
Federal Funds for Standby Readiness

• Mainly PAX
• Need to coopt freight/express shippers
• Air-to-air refueling useful
• For freight aircraft, paradrop doors oxygen bottles for crew very important
• Ought to be possible to design for PAX inbound to theater, casualties outbound
• Wing-loading for passenger aircraft?
• Clam-shell doors, rear loading?

C-17 Commercial Version

• C-17 requirement from top-down OSD intervention
 — Neither USAF and USA wanted program
 — AAN will need more than current program provides
• Planned commercial version scraps military features
 — CRAF could subsidize their retention
 — CRAF could subsidize enhancements
• CRAF could equip with polycarbonate composite wing
 — Lighter, more efficient, hence extended range ~25%
 — Stronger, less likely to have stress problems
 — Could be equipped with MEMS maintenance aids
• CRAF could provide modern engines
 — Further gains in fuel efficiency, speed, and range
• Commercial C-17s could become a mainstay of AAN

Civil Reserve Air Fleet (CRAF)

• US government pays airlines to modify planes to meet wartime requirements
• AAN ought soon to become active re CRAF:
 — The aircraft built over the next decade will be those flying in 2016
 — Unless incentivized, airlines unlikely to buy:
 * Clam-shell doors for rapid load/unload
 * Provisions for parachuting in flight
 * In-flight refueling kits
 * Exterior-load hard points

Launch-in-Flight RAH-66

• How about launch-from-internal load via tow-to-flight, or parachute-to-flight, or paraglide-to-FARRP?
• AAN should vigorously experiment with intercontinental attacks to control land!

Strategic
AAN Map
Situational Awareness
Means, mechanisms and procedures for providing every member of any team, at every echelon, with access to the information he or she needs, when they need it, and can use it.

Situational Understanding
The ability of a team to use situational awareness to advantage, to comprehend information and to act upon it to execute the intent of the commander.

Informatics for Teamwork

• Reconfigurable C4I based on interrelated networks of networks with distributed nodes
• Personnel and equipment monitoring
• Small unit tactical communications
• Small/micro RPV's and robots at small unit level
• Imbedded training/learning loop
• Integrated jamming, cloaking, deception
• Asset visibility and monitoring

Situational Awareness/Understanding is NOT

• Intelligence — timely information about the enemy and the environment is necessary but not sufficient
• Every team having access to all information: function and practicality must govern informatics design
• A charter for uncoordinated action independent of the intent of the commander

VIRTUAL MINEFIELDS ("NO OPERATION ZONES")

- An operational concept using systems of systems to create large areas in which enemy military operations would be nearly impossible to conduct.
 - zones would be large enough to be operationally useful (e.g., 20x20x1km)
 - zones would be moved around a region rapidly
 - used on an "advance warning" or "non-stop" basis
 - enemy activity would be detected, targeted and disabled (not necessarily destroyed)
 - zones may not be enemy proof
- Applications of these "no operation zones"
 - shape the battlefield (e.g., delayed enemy forces)
 - barriers to prevent friendly or allied units
 - containment of enemy military operation
 - peace enforcement
 - demonstration of overwhelming U.S. military technical power
- Development characteristics
 - based on "systems of systems" (e.g., sensors, C2, jammer, weapon)
 - encourages a broad range of technology development efforts
 - multidisciplinary
Med Support in 20 Years....

- Combat forces 33% of current manning
 "Conserve the fighting strength..."
- Firepower 100% that of present threats
 "Realigned casualty prediction models..."
- Teeth-to-tail ratio (In-theater) > 1.0
 "Hyper-rapid evac to CONUS or haven..."
- Health care as needed vice per capita
 "Total health accountability, responsiveness..."
- Project care forward vice evac to care
 "Combat telemedicine to point of casualty..."
- Acquisition fueled by civil health-care system
 "Demand driven, exploiting advanced tech..."

Future Combat Casualty Care

- Sit Understanding: forestall, locate casualties
 — PSM component of C2
 — Triage from instant of impairment
- Mentor first-care provider
 — Bandwidth as important as bandages
- Stabilize far forward
 — Tele-treatment, tele-surgery
- Evacuate rapidly, preferably to secure haven
 — Downsize, harden in-theater med presence
- Med-holds in CONUS only
 — All convalescence, rehabilitation

ARAPAHO-MED:
Reconfiguring AMEDD Field Facilities for Operating at Sea

Stabilization Enroute to CONUS

DARPA Medical Technology for Combat Casualty Care

- Immediate Casualty Awareness
 — Casualty location, triage, treatment
- Accelerated Medical Response
 — Remote location, life support, imagery
- Enhanced Medical Treatment & Training
 — Combat informatics, trauma simulation

Hyper-fast Medical Evacuation

- Delta Clipper is commercial venture
dealing in critical cargo, key persons
- Could evac from any helipad to any tertiary care hospital in CONUS
- Max flight time > one hour
- 120 feet X 60 tons
- Civil Reserve Rocket
 Fleet (CRRoF)?
Anti-trauma Bio-Engineering

Energy failure → Ischemia → Organ Death

Ionic imbalance → Free radical formation

Membrane perturbations → Degradation of protein pathways

Activation of intracellular proteases, lipases, nuclease

Trauma Hibernon

- High-risk pharmacologic syntheses
 - molecular modeling, cell-level agents
 - program ~$50 million over 5 years
 - Use Special Agreements Authority
- Drug-induced tolerance to ischemia despite exsanguination, tissue hypoxia, and acute systemic shock; remote controlled injection
- Prevent irreversible cellular injury, restore homeostasis
 - Cessation of energy consumption
 - Block cell detractors
 - Stimulate natural defenses
No trucks, no tents, no shelters except ISO containers

Train and fight from containers, at sea or on-shore

• Army's ARAPAHO study of the '80s demonstrated that personnel and vehicle cost avoidance will pay for containerizing.

• Concept has strategic reach, plus tactical survivability in that containers can be entrenched.
Communications Technology for Teamwork

- Reliable connectivity in restrictive environments
- Able to operate amid hostile SIGINT/jamming
- Network widely dispersed teams
 - 70 teams, with 7-14 soldiers per team
 - 200 km x 200 km area of operations
- Scalable to larger areas, more teams
- Interoperable with legacy comm systems, e.g.
 - SINCgars
 - EPLRS
 - Mobile Subscriber Equipment (MSE)
- Field-worthy
 - Light-weight, low-power drain, user friendly
- Affordable (<$2000)

Coping with Enemy Information Warfare

Current Weakness Required Technology

Reliability in restrictive environments
- Diverse, redundancy
- Network
- Multi-band sets
- Robust, adaptive nets
- Innovative relays

Limited COMSEC
- New LPJ/LPD Means
- Spread spectrum
- Increased/variable bandwidth
- Directional/nulling antennae
- Power control

Range
- Novel waveforms, variable bandwidth, antennae
- Make the net for the need

Communicate what?

Voice Calls for fire
Position Teledicine
Orders PSM data

Data, Voice, Video
- in
- Built-up areas
- Coniferous forests
- Triple-canopy jungle
- Mountain

DARPA R&D for Tactical Comms

- Restrictive environments
 - Range and bandwidth, LPI, LPD,AJ
 - Combatant tracking for IFF
- Ground-based relay improvements
 - Better range, operational life, survivability
 - Portability and ease of deployment
 - Affordability
- Protocols
 - Adaptive, dynamic connectivity
 - Variable network control
- Integrated navigational capability
 - Time of arrival
 - Spread spectrum ranging

Parallel Channelization

- Reliable connectivity
- Low power
- Variable channels/link margins
- No feedback or "handshake"
 - simple
 - LPI
 - robust
 - scaleable

Multi-channel, all digital transceivers
Electric Combat Vehicle (ECV)

- Weight < 10 tons
- Hybrid electric/fossil fuel
- Fuel use 25% that of BFV
 @ 2X radius, 2X speed cross country
- Acoustic/thermal/visual signature reduction
- Active armor
- Active suspension
- Electric guns, DEW
- Mated to UAV for RSTA

Electric Direct Fire System (EDFS)

- Hybrid electric, crew of 2
- Fly-out infantry support wpn
- Slaved UAV
- Can tow arty/mortar container

ECV for Military Operations in Built-up Areas

- Squad of 7 (two teams)
- Hybrid electric, crew of 2
- Slaved UAV
- Can tow arty/mortar container

TECH for TEAMWORK: SCOUTER

- Helo mated for airmobile scouting
- Vehicles separate for ground scouting
 — Helo performs RSTA functions overheatching ATV
 — ATV is double-ended, RSTA rigged, functions of driving, RSTA ops shift front-to-rear for "scoot"

TeamCar for Airborne Division

- ATV, an AECV with a small, RSTA UAV
- ATV mounts direct fire w
- UAV control by Pilot •
- Assigned driver •
- Team of four for OP(s) •
- TeamCar tows a mortar pod
- Soldiers are parachutists; vehicles are air-dropped

Status of the "Ground Combat Platform"

Army approach:
- R&D objective: a common AFV chassis
- Commonality of components, stuctures, information systems, maintenance, training
- Not unlike the Armored Family of Vehicles program of the '80s
- Plan is to keep current platforms in service until R&D bears fruit
- Army prepared to fund required O&S
- Current proposed designs: 55 ton
- Desideratum: 40 tons, lower if feasible

Benefits of Common Chassis Approach

- Some improvement in strategic mobility
- Acquisition cost for "family" is reduced
- Cost of O&S (operation and sustainment) lower
 — Less fuel required (hence less fuel trucks)
 — Fewer spares overall
 — Simplified training
 — Fewer personnel overall
- Lower costs in sustainment base from privatization (perhaps) — acquisition reform, not modernization
There are Alternatives...

Approach A: Work the present system
- Much lighter, innovative tracked vehicles
- TRADOC sets requirement in which force projection/early entry dominates
- Creative arrangements for shared RDA costs

Approach B: Coopt commercial designs
- Non-traditional suppliers (Deere, Caterpillar)
- World-wide spares/maintenance support
- Business likely to respond to either requirements for tracks or for wheels

BUT...
- Commerce has proved that large numbers of heavy vehicles, wheels and tracks can be procured, operated, and sustained well below Army experience
- Testing by Germans supports 2 and 3 man crews
- Conventional design-weight is driven by armor to protect crew. Surely there is a better answer:
 - In information system design and automation
 - In active as well as passive protection

No Choice Provides Easy Answer

Approach A: Where will the Army get the money?

Approach B: Commercial tracks lack the speed and maneuverability Army seeks, and commercial wheels have failed all Army evaluations

Suggestion

An acquisition reform initiative to invite industrial participation in the determination of requirements for AAN combat vehicles...
Technology for Teamwork

- Portable sources of energy are essential for sensors, communications, and robots (including flying vehicles) used in support of small, tactical teams.
- Liibium batteries — currently in vogue — are expensive, dangerous, heavy, and difficult to dispose of.
- There are several promising designs for fuel cells that are likely to supplement batteries in the next decade.
- Beyond fuel cells lie very small engines, micro-electric mechanical systems (MEMS), that could furnish the antithesis of lithium batteries: very small, light, cheap, innocuous sources of mechanical and electric energy.

MEMS Turbo-generators

- Fabrication of refractory ceramics enables shirt-button-size gas turbines and generators (~6cc)
- Power densities (hp/unit volume) ~ full-size engines (100 watts/cc)
- Costs could be very low in volume
- Engines enable:
 - On-person electronics
 - UAV and fly-out weapons
 - "Refuel-able" power cells

MEMS Power

- Existing MEMS devices typically have 1 to 10 components, and 1-50 transistors.
- turbines are an order of magnitude more complex.
- Problem is fabricating parts — design unprecedented — innovative forming techniques.
- MIT expects to have an operating engine by year 2000 @ 20 watts.

µEngine vs. Conventional

<table>
<thead>
<tr>
<th></th>
<th>Leth</th>
<th>Next</th>
<th>Auto</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (kw)</td>
<td>0.02</td>
<td>0.1</td>
<td>50</td>
<td>500</td>
</tr>
<tr>
<td>Airflow (g/sec)</td>
<td>0.2</td>
<td>0.6</td>
<td>330</td>
<td>2500</td>
</tr>
<tr>
<td>Specific Fuel Cons (kg/hr/kw)</td>
<td>0.451</td>
<td>0.282</td>
<td>0.282</td>
<td>0.382</td>
</tr>
<tr>
<td>Power/Air Flow (kw/ckg/sec)</td>
<td>84</td>
<td>140</td>
<td>151</td>
<td>200</td>
</tr>
<tr>
<td>Power/Weight (kw/kg)</td>
<td>20:1</td>
<td>100:1</td>
<td>5:1</td>
<td></td>
</tr>
</tbody>
</table>

1 H2 fuel
2 JP-8

µTurbo-generator in BA-55901 case

- 7600 watt-hours with butane fuel.
- Typical consumption: 25 watts for 300 hours.
- 200°F exhaust without forced ventilation (dissipates in inches).
- Noise above human hearing.

1 Army LiH2O battery (62,000)
Mobile Offshore Base

- Module 300' wide X 500' long
- 6 modules = C-130 airfield; 10, C-17
- MNS signed by CMC, CINCSOC, CINCACOM and USCINCSO (FY95)
- Cost/module (DARPA estimate): $372M

Logistics Over the Shore (LOTS)

- Landing Ship Quay/Causway (LSQ/C)
 - Modified Very Large Crude Carrier
 - 15 knot speed
 - Ballasted to seafloor off beach to serve as stable pier head, recoverable
 - Carries up to 10,000 feet of raised causeway, cranes, pipelines, conveyor belt for containers

- Deployed in 72 hours up to seastate 5
Exactly where?

- For land warfare, GPS — unaided — is an unreliable and vulnerable mechanism.
- GPS is commercially available to friend and foe in searching for a combat edge. Land forces need better means for x,y,z.
- GPS is weakest where land forces need it the most: in built-up areas, mountains, jungles; with a small, dismounted team; for Personnel Status Monitors.
- GPS is susceptible to jamming. A 100 watt jammer can deny signal to commercial sets out to 100 km.
- Improved GPS is possible: e.g., more accurate clocks, better antennae, and integration with alternative position-fixing mechanisms such as inertial nav systems, or radio signal processing. These deserve high place in AAN priorities.

INS?

Inertial Navigation Systems can be coupled with GPS but INS sets have been big, expensive, power-eaters inappropriate for small teams. Situation is getting better:

<table>
<thead>
<tr>
<th></th>
<th>1987</th>
<th>1996</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (lbs)</td>
<td>47.3</td>
<td>18.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Volume (in³)</td>
<td>1418</td>
<td>480</td>
<td>100</td>
</tr>
<tr>
<td>Power (watts)</td>
<td>141</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>MTBF (hrs)</td>
<td>3500</td>
<td>6000</td>
<td>8000</td>
</tr>
<tr>
<td>Cost ($k)</td>
<td>100</td>
<td>70</td>
<td>15</td>
</tr>
</tbody>
</table>

Synergy via Redundant PLR

- More accurate GPS tracking
- More Anti- jam performance

Supplemental PLR data

More Accurate GPS Tracking

Improved Acquisitions

Precedes x,y,z
Unmanned Aerial Vehicles (UAV)

- Small aerial vehicles for RSTA ought to be integral to every tactical team
- Command and control must reside in team
- UAV for AAN should be largely robotic, that is, able to take and keep station with minimal human intervention from the team
- AAN should actively seek new UAV designs optimized for small unit operations

A Spherical UAV

- Geodesic (made of light, straight structural elements), beachball-size sphere that moves freely in x,y,z — optimized for hover above small units
- At each intersection on surface, a MEMS-jet is mounted normal to surface of sphere; thrust is metered to position UAV
- At center of sphere is fuel tank and processor(s), sensors and omens

A "Hummingbird" UAV for MOUT

CHANDELIER overhead

- UAV virtually-tethered to ECV
- Powered by micro-turbines
- Radio relay, DGPS
- “Constant stare” sensor(s) and “report change” algorithm

area of awareness

CHANDELIER offset

- Geodesic MEMS-jet UAV
- SAR, Thermal, MTI (or nth sensor)
- Radio relay, DGPS/INS
- Cooperative with ECV

area of awareness
Modernized Artillery

- Long range fires from USAF, USN, seabased MRLS and ATCMS
- Close, responsive fires from autonomous, distributed, unmanned fire units
- Calls-for-fire optimized for optimum responsiveness sensor/observer-to-target
- Cost effectiveness driven by target-worth and tactical urgency as well as \(P_h \) and \(P_k \)

Army Research Laboratory
Integrated Soldier Engagement System Concept

- Individual soldier becomes a node in a distributed interactive weapon system
- Individual soldier is equipped with fire direction system
 - Components: Fire direction unit; sensor suite & computer
 - Communications network
- Weapon systems distributed around battlefield in weapon pods
 - Semi-autonomous
 - Networked
 - Remotely equipped:
 - Air drop, robotics, cargo projectiles, light vehicles
 - Overarching OIC network

Modernized Artillery

As an "arsenal ship" a fast commercial container ship, with 6 to 8 launchers, ammunition supply, and vehicles for surface operations.

Containerized Artillery

- Light-weight Hybrid-Power Prime Mover
 - Rocket-powered 155mm proj

Containerized Artillery

- Flight vehicle design-to-cost $20k
- Uses GFE 155 cargo rounds @ 100X effectiveness
- 30 rd container - battery/5; 2-a rd containers feasible
- Each rocket is independently targeted
- Projectile is gas-launched, vertically boosted to 1-3 km altitude, glides thru flight to target, then dives
- Velocity 200m/sec. or 2 minutes to fly 24 km
- Accuracy on target @ 10 meters (GPS+INS)
- Prime mover is hybrid electric vehicle: fuel efficiency 200-300% better than current vehicles
- System air-droppable, deployable in C-130, CH-47, V-22
- Container electric powered, kevlar protected

Even in the Gulf...the intelligence system consistently came up short. All of the range, precision and lethality that a firepower system brings to the battlefield cannot be fully exploited unless the eyes of the system can isolate the most lucrative targets within a target array, then pinpoint those targets within a space smaller than the killing radius of a weapon, and deliver the weapon before the target moves or goes to ground.

To the infantryman seeking to kill the enemy, the source of ordnance exploding to his front is irrelevant. He must receive the most effective munition when and where he needs it. He must be able to mix firepower from all sources and apply all fires in concert...

In a small-scale war of intervention, tempo and speed will dictate that light, highly mobile infantry forces make up the majority of the force. In wars of intervention on the higher end of the scale, firepower must be used lavishly to win quickly at minimum cost...

The survival of the ground force will be most dependent on a protective aerial umbrella...

K.H. Sacks, Firepower in Limited War, 1994
DARPA has independently evolved a concept for a "deployable firepower system"

- Small, lightweight, low profile
- High accuracy
- Air droppable
- Major manpower savings
- Remote-control operation
- Capable against multiple target classes
- Production cost comparable to other weapons
- Responsive fires out to ~20 km

<table>
<thead>
<tr>
<th>Containerized Artillery</th>
<th>Range</th>
<th>Accuracy</th>
<th>Warheads</th>
<th>Size</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>DARPA's Deployable Firepower System</td>
<td>40+ km</td>
<td><150 m</td>
<td>DPICM, unitary, STRIX</td>
<td>23x37x3'</td>
<td>~5,000 kg</td>
</tr>
<tr>
<td>Dismounted MLRS</td>
<td>-10 km</td>
<td><100 m</td>
<td>DPICM, unitary, STRIX</td>
<td>6x4x5'</td>
<td>~5,000 kg</td>
</tr>
<tr>
<td>Multiple 120mm Mortars</td>
<td>25+ km</td>
<td>GPS or Hellfire Seeker</td>
<td>unitary, STRIX, SADARM, BAT</td>
<td>5x3x4'</td>
<td>~150-2,000 kg</td>
</tr>
<tr>
<td>Vertical-launch Mini-missile</td>
<td>40+ km</td>
<td>GPS</td>
<td>StriX, SADARM, BAT</td>
<td>5x3x4'</td>
<td>~500-2,500 kg</td>
</tr>
<tr>
<td>Vertical-launch Smart Bus</td>
<td>~20+ km</td>
<td>GPS or Hellfire Seeker</td>
<td>SADARM, BAT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Smart Bus for 155 mm Concept
- Vertical launch via gas bag
- ~20 km range
- Total weight < ~50 kg
- Time of flight ~1 min/20 km

Smart Bus for 155 mm Costs
- Missile Motor $5k
- 155 proj. $1-5k
- GPS (w/INS) $1k ($1.5k)
- Missile shell, air bag $5k
- $12k ($26k)
Fire & Forget Fly-out Weapon

A Weaponized Micro-UAV

- Plastic tube launched
- Flies level to \(x,y,z+1 \text{m} \)
- Accelerates to Mach 1
- Escape to free-fall trajectory
- Discharges either (1) flechettes or (2) pepper-foam
- Launcher establishes \(x,y,z \); seeker fixes shape

Relational, Forearm Conformal Display

Voice and Touch Activated

- 4 inches wide x 3 inches high

ACOUSTIC TECHNOLOGY

Broader Implications?

- Further development of acoustic technology and systems would provide new military opportunities in weapons and reconnaissance, e.g.:
 - Reconnaissance sensors
 - Targeting: UAV in counter battery mode
 - Smart weapons: Anti armor/anti vehicle
 - New weapon types: anti-helicopters, smart munitions
 - Battlefield deception: noise makes replicating weapon fire
 - Tactile surprise silences on all weapons
- Progress has already been made in some systems (e.g., UGS, BATH). Broad application of acoustics could have the following impact:
 - Present potential adversaries with more complexity on battlefield
 - Complicate adversary's war planning and assumptions
 - Provide opportunities for major surprise (i.e., adversaries may not immediately understand how their forces are being attacked, and thus are slow to react).

TEAM-MEMBER, 2016

Team as Sonic Array

- Hostile sniper shoots at 3
- Crackthump detected by all
- Automatically sent to comm relay
- Relay integrates, computes azimuth and range
- Displays relational data on forearm leader (1)
- Leader can elect broadcast to all

Relational, Forearm Conformal Display

Voice and Touch Activated

- 4 inches wide x 3 inches high

ACOUSTIC TECHNOLOGY

Broader Implications?

- Further development of acoustic technology and systems would provide new military opportunities in weapons and reconnaissance, e.g.:
 - Reconnaissance sensors
 - Targeting: UAV in counter battery mode
 - Smart weapons: Anti armor/anti vehicle
 - New weapon types: anti-helicopters, smart munitions
 - Battlefield deception: noise makes replicating weapon fire
 - Tactile surprise silences on all weapons
- Progress has already been made in some systems (e.g., UGS, BATH). Broad application of acoustics could have the following impact:
 - Present potential adversaries with more complexity on battlefield
 - Complicate adversary's war planning and assumptions
 - Provide opportunities for major surprise (i.e., adversaries may not immediately understand how their forces are being attacked, and thus are slow to react).
Trained & Learning

- Trained to a high readiness baseline
- Capable of learning, from that baseline, to rapidly adjust to the environment
- Conduct STOW rehearsals in any location, for all combatants, with embedded systems
- TES and AAR capabilities embedded in C4I
- TRADOC capabilities distributed directly to operational area

Technology for Teamwork

Improved Recruiting Systems

Implicit in the AAN concept is fewer, more capable soldiers. Hence recruiting, classifying, and selecting these becomes a high-pay-off undertaking. AAN must:

- Meet requirements for technically sophisticated members of small teams
- Match each soldier's abilities to his/her job
- Retain apt soldiers and develop them into leaders

To do so, AAN must be able to:

- Measure aptitude with certainty
 - Psychomotor and spatial tests
 - Assessments of temperament and interests
- Accurately predict performance as a team-member

Technology for Teamwork

Carefully designed units

- Organizational design must be proved in a series of increasingly demanding simulations (constructive, virtual and live)
 - E.g., recent experiments in small team design at IDA pointed up need for disciplined understanding of task distribution, sensor management, data flow, human interfaces with information systems
 - This effort can both advance behavioral understanding and facilitate incorporation of new insights

AAN unit design will require extraordinary efforts by Army Research Institute (ARI), Walter Reed Army Institute of Research (WRAIR), AMC's Soldier Support Command, and TRADOC

Simulation in Support of Combat and Training Development

- Understanding
- Virtual Simulations
- Live Simulations
- Concept

Phased application to the depth system's principles

Constructive Simulations
- Live Simulations
- Virtual Simulations

More attention: Army's project to develop distributed simulations in support of AAN
Utility of models and simulations to address tactical echelons

<table>
<thead>
<tr>
<th>Constructive Simulation</th>
<th>Virtual Simulation</th>
<th>Live Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battle仿真</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Company仿真</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Division仿真</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Squad仿真</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Team仿真</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Individual仿真</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Prototype approaches to date

The virtual prototype

The functionality gap (it’s significant!)

Other knowledge gaps & uncertainties

Another dimension of virtual prototyping
Another dimension of virtual prototyping

Army After Next

<table>
<thead>
<tr>
<th>Sample Representation</th>
<th>Use</th>
<th>Geolocation</th>
<th>Standard Components</th>
<th>Reach Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAN (Light Simul.)</td>
<td>Very small or large or both</td>
<td>World-wide</td>
<td>Single layer</td>
<td>Any number of locations</td>
</tr>
<tr>
<td>Urban Terrain (Reality)</td>
<td>World-wide</td>
<td>Single layer</td>
<td>Any number of locations</td>
<td></td>
</tr>
</tbody>
</table>

CONCEPT EXPLORATION

Army After Next

- Brigade Experiment Mission Simulation

Action: Field Test

- Company Commanders
- Platoon Leaders
- Squad Leaders
- Team Leaders
- Forward Observers
- Bongos
- Special Forces

Support: Simulation

- Brigade Commanders
- Division Commanders
- Commanders

Suggested Approach

AAN: Army After Next

- DARPA: Defense Advanced Research Projects Agency
- DARPAt: Defense Advanced Research Projects Agency
- AAN: Army After Next

Problem: Force XXI

- If objective is to learn from Force XXI in developing AAN, imperative to apply digitization to light forces, experiment with networking and comms minus Abrams, Bradley AFV.

- Disdmounted Battlespace Battle Laboratory (DBBL) relatively primitive compared with Mounted Battlespace Battle Lab.

AAN Virtual Concept Exploration

- Individual:Battalion Portal
 - War Plan
 - Battle Plan
 - Battle Plan
- Individual:Vehicle Portal
 - War Plan
 - Battle Plan
 - Battle Plan
- Individual:Simulate Equipment
 - War Plan
 - Battle Plan
 - Battle Plan
- Individual:Simulate Equipment
 - War Plan
 - Battle Plan
 - Battle Plan
The DARPA SUO Program

No One Has Succeeded So Far

- Force XXI (Oct 96)
 - Situation Awareness works; but not often
 - Electronic overlays do not work
- Rand (Sep 96)
 - Even multi-tiered RSTA cannot acquire all targets
 - Even with best RSTA case, advanced (remote fires) do not provide comprehensive lethality at range

Illustrative SUO Modeling and Simulation Application (DSB Concept Exploration)

- ISSUE:
 - What is the optimal mix and application of technologies to optimize a small team’s employment of remote fires to destroy the enemy? (NOT what is the best way to submit the existing request for fire!)
- SIMULATION:
 - Virtual Concept Exploration Facility
 - Man-in-the-loop: USMC lieutenants and Army captains
 - Environment: 2016

Finding 1: Multiple Redundant Intra-team Engagements

Finding 2: Multiple Redundant Intra-battalion Engagements

Extremely High Mission/Battle and Engagement Expectations

- A battlefield 20 years in the future that is different from any that has ever existed
- A synergistic system; the utility of any one component is a function of the utility of all other components
- Highly human dependent; the most complex component on the battlefield

A Balanced and Judiciously Executed Modeling and Simulation Program Can Maximize System Utility And Minimize Risk

- Facilitate early and continuous common understanding of objective system expectations by developer and user
- Enable detailed visualization of technical contributions to areas 2006-2016 battlefield
- Support exploration of technical approaches within their systemic context
- Enable simultaneous consideration of the engineering, engagement, and mission/battle aspects of the system

It's the best means for knowing where you are going and what to expect when you get there

Initial Case: Every Soldier an FO
Finding 3: Considerable Time was Wasted Adjusting Fires

Finding 5: The Incorporation of a Mellos-type Device Enhances Precision, But the Combination Is Ungainly

Technical Requirement 1: Develop Means to Reduce Multiple Engagements of Same Target

Technical Requirement 2: Develop Means to Facilitate Management of Multiple Requests

Technical Requirement 3: Integrate PDA/Mellos Functions into Single Device

Possible SUO Implications of DSB Findings
- The key to optimizing the employment of remote fires by small units may be the technological enhancement of 2-man elements rather than each individual combatant
- There may be a higher payoff from providing technological enhancements for the management of multiple simultaneous requests for fire by an individual (or 2-man element) than enhancing the submission of individual requests
- Increasing the number of requesters increases the potential for simultaneous engagements of the same target and means must be found to minimize this

How This Insight Was Gained
Physical Entities of a Small Unit Virtual Concept Exploration Facility (ver 2.0)

Creating the Circa 2006-2016 Battlefield

- Individual combatant or human factors specialist
- Remote sensors
- Remote fire controller
- Behavioral psychologist or human factors specialist
- Automatic data collection and storage
- Air
- Data transmission

The Virtual Simulation Facility

- Virtual battlefield
- Individual Combatants
- Observers
- Command and Control
- Data Collection

Immerging the Individual Combatant Afoot Into The Circa 2006-2016 Battlefield

- Digital Terrain Data Base
- Large Screen Displays
- Stereo Headsets
- Radio Command
- Position Location Device
- Electronic Compass
- Laser Range Finder & Designator
- Individual Sensor Array

The AAR: Gaining Common Insight At The Operational Level

The AAR: Gaining Common Insight At The Senior Level

SUO Modeling and Simulation Issues

It's a Collective Process!!!
SUO Modeling and Simulation Issues

<table>
<thead>
<tr>
<th>SUO Functionality</th>
<th>A. What is the best indication of performance forecasting for high or low productivity? (Circle your response)</th>
<th>B. What is the best indication of productivity and simulation for high or low productivity? (Circle your response)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observational</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Tracking</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>For Support Decisions</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Planning</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Modeling</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Technical Future</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Technical Strategy</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Resource Management</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Competitiveness</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>
AIR CAVALRY REGIMENT

- Mission: cover deployment of AAN
- Regimental C^3 from long-dwell aircraft
- 3 squadrons of three troops each
 - Each squadron has FARRP
 - Double manning throughout
- Troop has 4 RAH-66 Comanche, 4 Scouter vehicles, 1 utility helicopter
- Strengths (~) Troop 40, Squadron 140, Regiment 500

RAH-66 Comanche

- Light attack helicopter, IOC ~ 2010
- 20 times more survivable
- 5 times better RSTA, P_k, OR rate
AIRBORNE INFANTRY BRIGADE

• Mission: establish and protect APOD
• Brigade C³ from long-dwell aircraft
• 4 battalions of four companies each
 — Each company has 8 TeamCars
 — Double manning throughout
 — One utility helo per company
• Teams normally assigned immediate fire
 LIFR units; battalion others as GS
• Strength: company 96, battalion 400,
 brigade 1600
MECHANIZED INFANTRY BRIGADE

- Mission: control urban areas
- Brigade C³ from long-dwell aircraft
- 4 battalions of four companies each
 - Per Co, 6 SquadPod, 2 EDFS
 - Double manning throughout
- Cos normally assigned immediate fire
 LIFR units; battalion others as GS
- Strength: company 96, battalion 400,
 brigade 1600

1/2

AIRMObILE INFANTRY BRIGADE

- Mission: control urban areas
- Brigade C³ from long-dwell aircraft
- 4 battalions of four companies each
- Cos normally assigned immediate fire
 LIFR units; battalion others as GS
- Strength: company 70, battalion 210;
 2 Utility Helo Cos@ 120; Squadron EDFS
 @ 120; brigade ~ 1100

2/2