
Specifying and Certifying
Information Flow Properties
in MILS Systems

John Hatcliff, Professor

Torben Amtoft, Associate Professor
Anindya Banerjee, Professor
Simon Ou, Assistant Professor
Robby, Assistant Professor

SAnToS Laboratory
Computing and Information Sciences

Kansas State University

Support: Air Force Office of Scientific Research, Rockwell Collins, National Science Foundation

DoD Relevant Contexts

 Access to information to warfighters
across all levels of command and
across forces (including, e.g., NATO
allies)

 Challenges
 Data from a variety of sources with

different security levels
 weather, GIS, GPS of forces and assets,

target info, battle plans, etc.
 Data may be blended, integrated, and

transformed (e.g., JBI Fuselets) so that
the ultimate source of the data is
blurred

 Tension between
 providing aggressive information flow
 preventing access to unauthorized

parties

Supporting Security in Information Centric Warfare

 What architectures should be used?
 Many contractors -- how do you get

them to agree on interfaces?
 How do you develop a market for

components?
 How to plug in COTS components?
 How do you establish end-to-end

assurance?

Challenges…

Today’s Reality

CH 53K -- Chinook

 On board computer system
manages mission/tactical data
(high security) as well as
maintenance data (low security)

 Due to the inability to
implement/certify MLS systems,
all data is classified as high
security

 Ground crew does not have high
security clearance

 Currently, pilot must manually
step through all data to scrub it,
and make maintenance data
available to grounds crew

Grounds Crew

Colleagues at Rockwell Collins are contracted to
provide an automated solution

labor intensive
manual scrub of data

Chinook Pilot

Previous Approaches

 All security policy enforcement
performed by the security kernel
 based on Bell-LaPadula / Trusted

Computing base model

 As security policy became more
complex:
 Code grew in security kernel
 Certification efforts become

unmanageable
 Evaluatability of kernel decreased
 Maintainability of kernel code

decreased
 Policy decisions were based upon

incomplete/unauthenticated
information

Monolithic Security Kernels

(Source: MILS/MLS Architecture for Deeply Embedded Systems, Dransfield, et al.)

MILS Goals
Multiple Independent Levels of Security (MILS) Architecture

(Source: MILS/MLS Architecture for Deeply Embedded Systems, Dransfield, et al.)

MILS Principles

TS
TS

S

Separation guarantees no
information flow / interference
between components

Only interaction occurs
through explicitly defined ports
and unidirectional channels

Downgrader

U

Network
Guard

Infrastructure components
mediate cross-domain flow.
Built & verified once; reused in
many applications.

Logical/Policy View

MILS Principles

TS
TS

S

U

Downgrader

Network
Guard

MILS Separation Kernel

Processor

Application Partitions

MILS Service Partitions

Down
Grader
(MLS)

Network
Guard
(MLS)Guest OS

Application

TS

Guest OS

Application

S

Virtualization technology in separation
kernel guarantees separation between
partitions and confines information flow
to specified channels.

Implementation View

…

(Source: “Two-level view” due to John Rushby, SRI)

Logical/Policy View

Implementation View

MILS Principles

TS
TS

S

U

Downgrader

Network
Guard

MILS Separation Kernel

Processor

Application Partitions

Guest OS

MILS Service Partitions

Down
Grader
(MLS)

Network
Guard
(MLS)Guest OS

Application Application

TSS

MILS Separation Kernel

Processor

Guest OS

Application

TS
PCS

(MLS)

PCS

(MLS)

Partitioning
Communication
System (PCS)
extends separation
property to network.

MILS Goals

 By building/enforcing security
policies based on…
 Data Isolation
 Information Flow Control
 Periods Processing
 Damage Limitation

 …in a…
 microprocessor centric manner

(e.g., MILS separation kernel)
 network centric manner (e.g.,

MILS middleware -- partitioning
communication system, etc.)

In summary, how does MILS achieve its goals?

Logical/Policy View

Implementation View

MILS Architecture

 Non-bypassable. Security
functions cannot be circumvented.

 Evaluatable. Security functions
are small and simple enough to
enable rigorous proof of
correctness through mathematical
verification.

 Always Invoked. Security
functions are invoked each and
every time.

 Tamperproof. Security functions
and their data cannot be modified
without authorization, either by
subversive or poorly written code.

 Factored out and detangled security
concerns into smaller components --
dramatically improves the ability to
validate

 Separation kernel typically must be
verified to…

 Common Criteria EAL 6 or EAL 7
 Director of Central Intelligence Directive

6/3

 Requires the use of formal
mathematical/logical methods

MILS Security Mechanisms are “neat”

MILS Participants

 AFRL, NSA

 AAMP7 (Rockwell Collins)
 Integrity 178B (GreenHills)
 LynxOS (LynxWorks)

Primary Sponsors

Separation Kernels

Middleware and Services

 PCS (Objective Interface Systems)
 Crypto Engines (Rockwell Collins)
 Network Guard Product Line

(Rockwell Collins)
(Source: MILS/MLS Architecture for Deeply Embedded Systems, Dransfield, et al.)

DoD Programs

(Source: MILS/MLS Architecture for Deeply Embedded Systems, Dransfield, et al.)

Example
LynxWorks LynxSecure Separation Kernel

(Source: LynxWorks marketing material)

Example

 Rockwell Collins has developed
the AAMP7 processor that
provides a separation kernel

 Separation policy of the AAMP7
has received NSA certification
 verification using ACL2 theorem-

prover
 the only such certified processor

 Rockwell Collins has also carried
out software separation kernel
certification -- Green Hills
INTEGRITY 178B RTOS (OS for
the F-35 Joint Strike Fighter)

Rockwell Collins -- Security Certification (NSA)

Example

(Source: MILS/MLS Architecture for Deeply Embedded Systems, Dransfield, et al.)

Overcoming stove-piped architectures…

Example

(Source: MILS/MLS Architecture for Deeply Embedded Systems, Dransfield, et al.)

Overcoming stove-piped architectures…

Example
Systematically applying MILS solutions…

(Source: MILS/MLS Architecture for Deeply Embedded Systems, Dransfield, et al.)

Information Assurance Products

 Rockwell Collins is developing multiple
information assurance on top of AAMP7
following the MILS architecture
 Janus Crypto-Engine
 High-Assurance Network Guard

 product line
 Military GPS with MLS facilities

 200+ developers
 KSU SAnToS is working with Rockwell

Collins researchers and product groups
to form a vision of what MILS-specific
architecture, development, and
certification tools should look like

 Almost no MILS-specific development
tools exist! Solutions will likely spill
over to other NSA-funded efforts

Rockwell Collins -- Multiple Products

Basic Issues

Inputs

Outputs

x y w v

a b

Specification and checking of information flows between interface
inputs and outputs -- the basis of MILS security contracts

software
unit

This graph (relation) between inputs and outputs
is often the basis of the formal MILS security policy

Need to ensure the
separation (non-
interference) of the red and
blue “channels” of
information flow

z

procedure Operate;
--# global out KeyStore.RotorValue,Encrypted;
--# in out KeyStore.SymmetricKey;
--# in Clear;

Information Flow Contracts

“Enforcing Security and Safety Models with an Information Flow Analysis Tool”

SPARK provides “information flow” contracts that describe how a procedure causes
information to flow from one variable to another

Start by identifying procedure inputs and outputs
(both parameters and any globals used) --
provides “frame conditions”

“in”-only variables are not written

“out”-only variables are not read

“in/out”- both read and written

Information flows from Clear,
KeyStore.SymmetricKey to Encrypted

procedure Operate;
--# global out KeyStore.RotorValue,Encrypted;
--# in out KeyStore.SymmetricKey;
--# in Clear;
--# derives
--# KeyStore.SymmetricKey, KeyStore.RotorValue
--# from
--# KeyStore.SymmetricKey
--# &
--# Encrypted
--# from
--# Clear, KeyStore.SymmetricKey
--# ;

Information Flow Contracts

“Enforcing Security and Safety Models with an Information Flow Analysis Tool”

Spark information flow
annotations…

SymmetricKeyClear

Encrypted

SPARK provides “information flow” contracts that describe how a procedure causes
information to flow from one variable to another

Information Flow
Visualization

MILS IDE Support for SPARK
Enhancements/additions to Praxis SPARK that specifically
target information assurance applications

Developers

Checking / Inference

Information Flow Contracts

SPARK Eclipse IDE

Querying/Browsing
of Information Flow

Integrated development
environments that help
engineers specify, visualize,
implement, and verify
information flow policies

Source Code

Information Flow
Visualization

MILS IDE Support for SPARK
Enhancements/additions to Praxis SPARK that specifically
target information assurance applications

Source Code

Developers

Checking / Inference

Information Flow Contracts

SPARK Eclipse IDE

Querying/Browsing
of Information Flow

Provide modeling tools to specify and
evaluate MILS policy architecture

Specify & query
information flows at the
architecture level

KSU SPARK Eclipse (SpAda)
Basic Information Flow Browsing

Where does
information

from
parameter I3

flow?

SpAda automatically
marks the lines and
output vars into which
information from I3
flows.

Basic Info Flow
Browsing

Developer highlights I3 and selects
“Forward Flow” visualization.

What should
my info flow
contract be
for output
parameter

O1?

Info Flow Contract
(Derives Clause)
Autogeneration

SpAda automatically
infers an information
flow contract for a
given subprogram
implementation

Show me all
variables and

statements in my
program that

manipulate top
secret data

MLS Flow Markup

Top Secret

High

Low

Public

Security LatticePrincipals

A1
A2
A3
…
An

MLS security lattice with
color mark-up tags

Given an initial tagging of input
variables according to security
level, SpAda propagates and
marks up source code to indicate
MLS level of statement/variable

(not yet implemented -- target Dec 2008)

Show me a
sequence chart
illustrate the call

tree for procedure
P and mark
instances of

Public data flow in
parameter passing.

End-to-End Flow Visualization

Top Secret

High

Low

Public

Security LatticePrincipals

A1
A2
A3
…
An

MLS security lattice with
color mark-up tags

(not yet implemented -- target Dec 2008)

SpAda automatically generations
visualization of a method call
graph along with markups of flows
of different MLS categories.

Sequence chart showing procedure call chain
with markup of calls that pass Public data

Is it the case that
all flows from
Partition P1 to

Partition P5 pass
through guard
procedure G3?

Model-checking of path
properties through
information flow graphs

High-level information flow
path requirements
formalized in terms of
temporal logic

SpAda extracts information flow
graphs from source code, and
then uses model checking to
check path properties through
information flow graphs.

(not yet implemented -- target May 2009)

Conclusion

 MILS is a security architecture that…
 provides a foundation for secure system based on notions of

separation
 factors out security functionality into composable units that are

easier to evaluate/certify

 Security certification frameworks such as Common
Criteria are being used to encourage a commodity
market of MILS components

 KSU SAnToS + Rockwell Collins ATC research aims to…
 develop mathematics/logic models of information flow
 provide integrated tools that directly target MILS development

 architecture modeling and information flow querying
 code level specification/checking info flow browsing

 reduce development time/costs, increase confidence

For More Information…

SAnToS Laboratory,
Kansas State University
http://people.cis.ksu.edu/~hatcliff

Please contact me if you are interested in technical
papers for SPARK Ada & Java

IATAC SOAR

“Software security requires security to be seen as a critical property of the
software itself — a property that is best assured if it is specified from the
very beginning of the software’s development process. Software security
assurance is addressed holistically and systematically, in the same way as
quality and safety”.

Information Assurance
Technology Analysis Center

Software Security Assurance
(July 31, 2007)

Implies…
 Security specifications integrated

throughout designs, architecture,
code

 Checked/cross-checked throughout
development

 Development tools (editors,
compilers, debuggers, code query
tools, static checkers, testing tools)
extended to be aware of MILS/MLS
security policies

Basic Issues

Inputs

Outputs

x y w v

a b

Specification and checking of information flows between interface
inputs and outputs -- the basis of MILS security contracts

software
unit

This graph (relation) between inputs and outputs
is often the basis of the formal MILS security policy

Need to ensure the
separation (non-
interference) of the red and
blue “channels” of
information flow

z

Non-interference

Inputs

Outputs

x y w v

The classical notion of non-interference (Goguen & Meseguer) provides
semantic foundation for describing the required separation…

a b

Non-interference theorem:
For any two executions with initial states s1, s2,

Proving “nothing interferes with red channel”
(i.e., a only depends on x,y and z)…

s’1

s1 s2

s’2

if s1 and s2 both agree on the values of x,y and z,
then final states s’1 and s’2 agree on the value of a

s’1(a) = s’2(a)

implies

z s1(x) = s2(x)
s1(y) = s2(y)
s1(z) = s2(z)

Non-interference

Inputs

Outputs

The classical notion of non-interference provides semantic foundation
for describing the required separation…

a b
s’1(a) = s’2(a)

s1

s’1

s2

s’2

there must be some other variable upon which a depends, e.g., w
that had different values in s1 and s2

If s’1 and s’2 do not agree on the value of a

s1(w) = s2(w)

Intuition

x y w vz s1(x) = s2(x)
s1(y) = s2(y)
s1(z) = s2(z)

Proving “nothing interferes with red channel”
(i.e., a only depends on x,y and z)…

Non-interference

Inputs

Outputs

How can we lift reasoning about non-interference to code-level
annotations?

a b
s’1(a) = s’2(a)

s1

s’1

s2

s’2

Let’s have an
abbreviation for the
concept of “agreement”

implies

x y w vz

Proving “nothing interferes with red channel”
(i.e., a only depends on x,y and z)…

s1(x) = s2(x)
s1(y) = s2(y)
s1(z) = s2(z)

Non-interference theorem:
For any two executions with initial states s1, s2,
if s1 and s2 both agree on the values of x,y and z,
then final states s’1 and s’2 agree on the value of a

Non-interference

Inputs

Outputs

The classical notion of non-interference provides semantic foundation
for describing the required separation…

a b

||- x#, y#,z#

s1,s2 ||- x# iff s1(x) = s2(x)

s1

s’1

s2

s’2 ||- a#

implies

x y w vz

Proving “nothing interferes with red channel”
(i.e., a only depends on x,y and z)…

Novel form of assertion
has semantics based on
pair of states instead of
just a single state.

Agreement Assertion:

a b

x y w vz

Agreement Assertions

Inputs

Outputs

Amtoft, Bandhakavi, and Banerjee, developed a novel Hoare-style logic
for agreement assertions that includes a pre-condition calculus…

a b

Source-code contract that states “nothing interferes with
red channel” (i.e., a only depends on x,y and z)…

a#
Post-condition assertions

Pre-condition calculus provides
semantics and a algorithm for
inferring pre-conditions from post-
conditions

x# y#
Pre-condition assertions

z#

Example Derivation

if (x > 5) then

 a := y;

else

 a := z;

endif

b := w + v;
a# Post-condition: agreement on a

Example Derivation

if (x > 5) then

 a := y;

else

 a := z;

endif

b := w + v;
a#

a# Irrelevant to a’s value,
so a# still required

Example Derivation

if (x > 5) then

 a := y;

else

 a := z;

endif

b := w + v;
a#

a#

a gets its value from z and so z#
is required

a#

z#

Example Derivation

if (x > 5) then

 a := y;

else

 a := z;

endif

b := w + v;
a#

a#

a gets its value from y and so
y# is required

a#

z#

a#

y#

Example Derivation

if (x > 5) then

 a := y;

else

 a := z;

endif

b := w + v;
a#

a#

y# is required in true branch,
z# is required in false branch,
x# is required to ensure that
there is agreement upon which
branch is taken

a#

z#

a#

y#

y#, z#, x#

Our Intent

Language Independent
Contract Logic Representation

Reasoning Engine

SPARK
+ Extensions

Safety Critical C Java…

x y w z x y w z x y w z

A language-independent core logic that provides the
semantics and implementation for info flow contracts in
multiple languages…

This paper…

Supporting SPARK Contracts

if (x > 5) then

 a := y;

else

 a := z;

endif

b := w + v;
a#a

a#a

a#a

z#a

a#a

y #a

y#a, z#a, x#a

if (x > 5) then

 a := y;

else

 a := z;

endif

b := w + v;
b#b

w#b v#b

w#b v#b

--# derives a from y,z,x
--# b from w,v

Doesn’t capture the
fact that, e.g., a
only depends on y
when x > 5

Mailbox Example Derivation

if INP_1_RDY and not OUT_0_RDY then

 DATA_1 := INP_1_DAT;

 INP_1_RDY := false;

 OUT_0_DAT := DATA_1;

 OUT_0_RDY := true;

fi
OUT_0_DAT#

OUT_0_DAT#

OUT_0_DAT#

DATA_1#

DATA_1#

INP_1_DAT#

OUT_0_DAT#
INP_1_DAT#

INP_1_RDY#, OUT_0_RDY#

Doesn’t capture the fact
that OUT_0_DAT only
depends on IN_1_DAT
when INT_1_RDY and not
OUT_0_RDY.

Conditional Agreement Assertions

s1,s2 ||- x# [[x]]s1 = [[x]]s2

We’ll use a more general form of the logic described by
Amtoft and Banerjee in [FMSE 07]…

s1,s2 ||- P => E#

generalize

iff

whenever [[P]]s1 and [[P]]s2 hold
 then [[E]]s1 = [[E]]s2

iff

Note: x# abbreviates true => x#

Example Derivation

if INP_1_RDY and not OUT_0_RDY then

 DATA_1 := INP_1_DAT;

 INP_1_RDY := false;

 OUT_0_DAT := DATA_1;

 OUT_0_RDY := true;

fi
OUT_0_DAT#

OUT_0_DAT#

OUT_0_DAT#

DATA_1#

DATA_1#

INP_1_DAT#

!INP_1_RDY || OUT_0_RDY => OUT_0_DAT#
INP_1_RDY && !OUT_0_RDY => INP_1_DAT#

INP_1_RDY#, OUT_0_RDY#

Enhanced SPARK Contracts

--# derives
--# Output_1_Data from
--# Input_0_Data,
--# Output_1_Data,
--# Input_0_Ready,
--# Output_1_Ready

--# derives
--# Output_1_Data from
--# Input_0_Data
--# when (Input_0_Ready and
--# not Output_1_Ready),
--# Output_1_Data,
--# when (not Input_0_Ready or
--# Output_1_Ready),
--# Input_0_Ready,
--# Output_1_Ready

Enhanced SPARK contract language can now capture the
appropriate policy for the mailbox example…

Original SPARK New conditional SPARK

flows exist only
under certain
conditions

Information Flow
Visualization

Current Focus -- SPARK
Enhancements/additions to Praxis SPARK that specifically
target information assurance applications

Source Code

Developers

Checking / Inference

Information Flow Contracts

SPARK Eclipse IDE

Querying/Browsing
of Information Flow

Provide underlying Hoare-logic
representation that enables the
production of evidence
“certificates” confirming
conformance to flow policies

Conditional Info Flow
Precise Array Flows
Flows across SPARK boundaries
 (interpartition AAMP flows)
MLS Security Tags

+ extensions

Certifiers

